精英家教网 > 高中数学 > 题目详情

在平行六面体ABCD-A′B′C′D′中,AB=4,AD=3,AA′=5,∠BAD=90°,∠BAA′=∠DAA′=60°,则对角线AC′的长度为


  1. A.
    6
  2. B.
    数学公式
  3. C.
    8
  4. D.
    数学公式
D
分析:由题意画出几何体的图形,连接AC,根据cos∠A'AB=cos∠A'AC•cos∠CAB求出∠A'AC,根据互补性可知∠C'CA的大小,最后根据余弦定理得求出AC′即可.
解答:解:由题意几何体的图形如图,连接AC,
∵AB=4,AD=3,∠BAD=90°
∴AC=5,因为∠BAD=90°,∠BAA′=∠DAA′=60°,
根据cos∠A′AB=cos∠A′AC•cos∠CAB
=cos∠A′AC•
∴∠A′AC=45°则∠C′CA=135°
而AC=5,AA′=5,
根据余弦定理得AC′==
故选D.
点评:本题主要考查了体对角线的求解,三面角公式、余弦定理的应用,同时考查了空间想象能力,计算推理的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平行六面体ABCD-A1B1C1D1中,O为AC与BD的交点,若
A1B1
=
a
A1D1
=
b
AA1
=
c
,则向量
B1O
等于(  )
精英家教网
A、
1
2
a
+
1
2
b
+
c
B、
1
2
a
-
1
2
b
+
c
C、-
1
2
a
+
1
2
b
+
c
D、-
1
2
a
-
1
2
b
+
c

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若
AB
=
a
AD
=
b
AA1
=
c
,则下列向量中与
BM
相等的向量是(  )
A、-
1
2
a
+
1
2
b
+
c
B、
1
2
a
+
1
2
b
+
c
C、-
1
2
a
-
1
2
b
+
c
D、
1
2
a-
1
2
b+c

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行六面体ABCD-A1B1C1D1中,向量
D1A
D1C
A1C1
是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平行六面体ABCD-A1B1C1D1中,AB=AD=AA1=1,且∠BAD=∠BAA1=∠DAA1=60°,求AC1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行六面体ABCD-A1B1C1D1中,
AC
=
a
BD
=
b
AC1
=
c
,试用
a
b
c
表示
BD1
=
b
+
c
-
a
b
+
c
-
a

查看答案和解析>>

同步练习册答案