精英家教网 > 高中数学 > 题目详情
18.若{an}为等差数列,Sn是其前n项和,且S11=$\frac{22π}{3}$,则tan(π+a6)的值为(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.-$\frac{{\sqrt{3}}}{3}$

分析 由等差数列{an}的性质可得:S11=$\frac{11({a}_{1}+{a}_{11})}{2}$=11a6,解得a6.再利用诱导公式即可得出.

解答 解:由等差数列{an}的性质可得:S11=$\frac{22π}{3}$=$\frac{11({a}_{1}+{a}_{11})}{2}$=11a6=$\frac{22π}{3}$,
∴a6=$\frac{2π}{3}$.
则tan(π+a6)=tan$(π+\frac{2π}{3})$=tan$\frac{2π}{3}$=-$\sqrt{3}$,
故选:A.

点评 本题考查了等差数列的性质、诱导公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数g(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$,ω>0)的图象如图所示,函数$f(x)=g(x)+\frac{{\sqrt{3}}}{2}cos2x-\frac{3}{2}sin2x$
(1)如果${x_1},{x_2}∈(-\frac{π}{6},\frac{π}{3})$,且g(x1)=g(x2),求g(x1+x2)的值;
(2)当$x∈[-\frac{π}{6},\frac{π}{3}]$时,求函数f(x)的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某初级中学领导采用系统抽样方法,从该校800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k=16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从65~80这16个数中应取的数是(  )
A.71B.68C.69D.70

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知Sn为数列{an}的前n项和,若$Sn=n{a_{n+1}}+{2^n},{a_1}=1$,则数列$\left\{{\frac{1}{{n({{a_n}-a{\;}_{n+1}})}}}\right\}$的前n项和Tn=$\frac{3}{2}$-$\frac{2}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.f(x)=x+$\frac{1}{x-1}$(x<1)的最大值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$\frac{sinα+cosα}{sinα-cosα}$=$\frac{1}{2}$,则sinα•cosα=(  )
A.-$\frac{3}{10}$B.$\frac{3}{10}$C.-$\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中正确的个数是(  )
(1)若直线a不平行于平面α且a?α,则α内不存在与a平行的直线
(2)若直线a,b?α,且a∥β,b∥β,则α∥β
(3)若直线l上有无数个点不在平面α内,则l∥α.
(4)若平面α与平面β相交,则他们有无穷个公共点.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知sinα<0且cosα>0,则α的终边落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,凸五面体ABCED中,DA⊥平面ABC,EC⊥平面ABC,AC=AD=AB=1,BC=$\sqrt{2}$,F为BE的中点.
(1)若CE=2,求证:
①DF∥平面ABC;
②平面BDE⊥平面BCE;
(2)若二面角E-AB-C为45°,求直线AE与平面BCE所成角.

查看答案和解析>>

同步练习册答案