精英家教网 > 高中数学 > 题目详情
3.若$\frac{sinα+cosα}{sinα-cosα}$=$\frac{1}{2}$,则sinα•cosα=(  )
A.-$\frac{3}{10}$B.$\frac{3}{10}$C.-$\frac{2}{5}$D.$\frac{2}{5}$

分析 由条件利用同角三角函数的基本关系求得tanα=-3,从而求得sinα•cosα=$\frac{tanα}{{tan}^{2}α+1}$的值.

解答 解:若$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=$\frac{1}{2}$,则tanα=-3,∴sinα•cosα=$\frac{sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{tanα}{{tan}^{2}α+1}$=$\frac{-3}{10}$=-$\frac{3}{10}$,
故选:A.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow a=(cosα,sinα),\overrightarrow b=(cosx,sinx)$,$\overrightarrow c=(sinx+2sinα,cosx+2cosα)$,其中0<α<x<π
(1)若$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,且$\overrightarrow a⊥\overrightarrow c$,求tan2α的值;
(2)若$α=\frac{π}{4}$,求函数$f(x)=\overrightarrow b•\overrightarrow c$的最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知锐角在△ABC中,b=10,c=5$\sqrt{6}$,C=60°求
(1)外接圆半径;         
(2)求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设点P(x,y),x,y∈N且x+y≤4,则点P(x,y)的个数为(  )
A.12个B.13个C.14个D.15个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若{an}为等差数列,Sn是其前n项和,且S11=$\frac{22π}{3}$,则tan(π+a6)的值为(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.-$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$x2+lnx,求函数f(x)在区间[1,e]上的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点是F双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点,过左焦点F作直线与圆心为原点、半径为实半轴长的一半的圆相切于点E,直线FE交双曲线的右支于点P,点B是直线FE外任意一点,且2$\overrightarrow{BE}$=$\overrightarrow{BF}$+$\overrightarrow{BP}$,则双曲线的离心率为$\frac{{\sqrt{10}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.a1=2×(1-$\frac{1}{4}$),
a2=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$),
a3=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$),
a4=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)(1-$\frac{1}{25}$),
,…,
an=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{(n+1)^{2}}$),
(1)求出a1,a2,a3,a4
(2)猜测an=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{(n+1)^{2}}$)的取值并且用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.M={x|2x2-5x-3=0},N={x|mx=1},若N⊆M,则实数m的取值集合是{0,-2,$\frac{1}{3}$}.

查看答案和解析>>

同步练习册答案