精英家教网 > 高中数学 > 题目详情
11.设点P(x,y),x,y∈N且x+y≤4,则点P(x,y)的个数为(  )
A.12个B.13个C.14个D.15个

分析 欲求满足x+y≤4的点的个数,先在直角坐标系中画出满足x+y≤4的平面区域,后在区域中一一找出整数点即可.

解答 解:如图所示,
用数形结合法知共有15个满足x+y≤4的点P.
分别为(0,0),(0,1),(0,2),(0,3),(0,4),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(3,0),(3,1),(4,0)
共有:15个.
故选:D.

点评 借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知α,β为锐角,$sinα=\frac{{\sqrt{2}}}{10},sinβ=\frac{{\sqrt{10}}}{10}$,则cos2β=$\frac{4}{5}$,α+2β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}中,a1=2,an+1-an=2n,则数列的通项an=2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,D是BC的中点,AB=4,AC=3,则$\overline{AD}•\overline{BC}$=(  )
A.-7B.2C.$-\frac{7}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知Sn为数列{an}的前n项和,若$Sn=n{a_{n+1}}+{2^n},{a_1}=1$,则数列$\left\{{\frac{1}{{n({{a_n}-a{\;}_{n+1}})}}}\right\}$的前n项和Tn=$\frac{3}{2}$-$\frac{2}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.${C}_{3}^{3}$+${C}_{4}^{3}$+${C}_{5}^{3}$+…+${C}_{10}^{3}$=330(用数字解答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$\frac{sinα+cosα}{sinα-cosα}$=$\frac{1}{2}$,则sinα•cosα=(  )
A.-$\frac{3}{10}$B.$\frac{3}{10}$C.-$\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:[2(x-1)-1]9=a0+a1(x-1)+a2(x-1)2+…+a9(x-1)9
(1)求a2的值;
(2)求a1+a2+a3+…+a9的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a,b∈R,c∈[0,2π),若对任意实数x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是d个,则满足条件的有序实数组(a,b,c,d)的组数为(  )
A.7B.11C.14D.28

查看答案和解析>>

同步练习册答案