精英家教网 > 高中数学 > 题目详情
16.${C}_{3}^{3}$+${C}_{4}^{3}$+${C}_{5}^{3}$+…+${C}_{10}^{3}$=330(用数字解答)

分析 先把C33化为C44,再根据组合数的性质,Cnm+Cnm-1=Cn+1m,逐个化简,即可求出C33+C43+C53+…+C103

解答 解:∵Cmn+Cm-1n=Cmn+1
∴${C}_{3}^{3}$+${C}_{4}^{3}$+${C}_{5}^{3}$+…+${C}_{10}^{3}$=C44+C43+C53+…+C103
=C54+C53+C63+…+C103
=C64+C63+C73+…+C103
=…
=C104+C103
=C114
=330.
故答案为:330.

点评 本题考查了排列数公式和组合数性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图四个游戏盘(各正方形边长和圆的直径都是单位1),如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖,则应选择的游戏盘是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,复数z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)为纯虚数,则a的值为(  )
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={x|y=lgx},$B=\left\{{x\left|{\frac{2x+1}{3-x}}\right.<0}\right\}$,则A∩B=(  )
A.$(-∞,-\frac{1}{2})$B.(3,+∞)C.$(-∞,-\frac{1}{2})∪(3,+∞)$D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设点P(x,y),x,y∈N且x+y≤4,则点P(x,y)的个数为(  )
A.12个B.13个C.14个D.15个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.三棱柱ABC-A1B1C1中,A1-AC-B是直二面角,AA1=A1C=AC=2,AB=BC,且∠ABC=90°,O为AC的中点.
(Ⅰ)若E是BC1的中点,求证:OE∥平面A1AB;
(Ⅱ)求二面角A-A1B-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$x2+lnx,求函数f(x)在区间[1,e]上的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知F为抛物线C:y2=2x的焦点,点E在射线l:x=-$\frac{1}{2}$(y≥0)上,线段EF的垂直平分线与l交于点Q(-$\frac{1}{2}$,$\frac{3}{4}$),与抛物线C交于点P,则△PEQ的面积为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a>b>0,a+b=1,且x=(${\frac{1}{a}}$)b,y=log${\;}_{\frac{1}{ab}}}$ab,z=log${\;}_{\frac{1}{b}}}$a,则x、y、z的大小关系是(  )
A.y<z<xB.z<y<xC.x<y<zD.y<x<z

查看答案和解析>>

同步练习册答案