精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\frac{1}{2}$x2+lnx,求函数f(x)在区间[1,e]上的最大值、最小值.

分析 求出函数的导数,得到函数f(x)的单调性,从而求出函数的最大值和最小值即可.

解答 解:f′(x)=x+$\frac{1}{x}$>0,
当x∈[1,e]时,f′(x)>0,
函数f(x)单调递增,
∴f(x)max=f(e)=$\frac{{e}^{2}}{2}$+1,
f(x)min=f(1)=$\frac{1}{2}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.对于函数f(x),若定义域内存在实数x满足f(-x)=-f(x),则称f(x)为“限制奇函数”,
(1)试判断f(x)=x2+2x-4是否为“限制奇函数”?并说明理由;
(2)设f(x)=2x+m是定义在[-1,2]上的“限制奇函数”,求实数m的取值范围;
(3)设f(x)=4x-m•2x+1+m2-3是定义在R上的“限制奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,D是BC的中点,AB=4,AC=3,则$\overline{AD}•\overline{BC}$=(  )
A.-7B.2C.$-\frac{7}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.${C}_{3}^{3}$+${C}_{4}^{3}$+${C}_{5}^{3}$+…+${C}_{10}^{3}$=330(用数字解答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$\frac{sinα+cosα}{sinα-cosα}$=$\frac{1}{2}$,则sinα•cosα=(  )
A.-$\frac{3}{10}$B.$\frac{3}{10}$C.-$\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若数列{an}满足$\frac{1}{{{a_{n+1}}}}$-$\frac{1}{a_n}$=d(n∈N*,d为常数),则称数列{an}为调和数列,已知正项数列{$\frac{1}{b_n}$}为调和数列,且b1+b2+b3+…+b9=90,则b4+b6的值是(  )
A.10B.20C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:[2(x-1)-1]9=a0+a1(x-1)+a2(x-1)2+…+a9(x-1)9
(1)求a2的值;
(2)求a1+a2+a3+…+a9的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.化简$\frac{1}{{{2^2}-1}}+\frac{1}{{{4^2}-1}}+\frac{1}{{{6^2}-1}}+\frac{1}{{{8^2}-1}}+\frac{1}{{{{10}^2}-1}}$=(  )
A.$\frac{7}{12}$B.$\frac{7}{11}$C.$\frac{7}{10}$D.$\frac{5}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在锐角△ABC中,三个内角A,B,C的对边分别为a,b,c,sinA=$\frac{3\sqrt{10}}{10}$,asinA+bsinB=csinC+$\frac{2\sqrt{5}}{5}$asinB.
(Ⅰ)求B的值;
(Ⅱ)设b=$\sqrt{5}$,求△ABC的面积S.

查看答案和解析>>

同步练习册答案