精英家教网 > 高中数学 > 题目详情
17.化简$\frac{1}{{{2^2}-1}}+\frac{1}{{{4^2}-1}}+\frac{1}{{{6^2}-1}}+\frac{1}{{{8^2}-1}}+\frac{1}{{{{10}^2}-1}}$=(  )
A.$\frac{7}{12}$B.$\frac{7}{11}$C.$\frac{7}{10}$D.$\frac{5}{11}$

分析 将根据平方差公式将原式化简$\frac{1}{(2-1)(2+1)}$+$\frac{1}{(4-1)(4+1)}$+$\frac{1}{(6-1)(6+1)}$+$\frac{1}{(8-1)(8+1)}$+$\frac{1}{(10-1)(10+1)}$,采用“裂项法”即可求得原多项式的值.

解答 解:$\frac{1}{{{2^2}-1}}+\frac{1}{{{4^2}-1}}+\frac{1}{{{6^2}-1}}+\frac{1}{{{8^2}-1}}+\frac{1}{{{{10}^2}-1}}$
=$\frac{1}{(2-1)(2+1)}$+$\frac{1}{(4-1)(4+1)}$+$\frac{1}{(6-1)(6+1)}$+$\frac{1}{(8-1)(8+1)}$+$\frac{1}{(10-1)(10+1)}$
=$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)+$\frac{1}{2}$($\frac{1}{5}$-$\frac{1}{7}$)+$\frac{1}{2}$($\frac{1}{7}$-$\frac{1}{9}$)+$\frac{1}{2}$($\frac{1}{9}$-$\frac{1}{11}$)
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+$\frac{1}{7}$-$\frac{1}{9}$+$\frac{1}{9}$-$\frac{1}{11}$)
=$\frac{1}{2}$(1-$\frac{1}{11}$),
=$\frac{5}{11}$,
故答案选:D.

点评 本题考查“裂项法”求数列的前n项,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,复数z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)为纯虚数,则a的值为(  )
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$x2+lnx,求函数f(x)在区间[1,e]上的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知F为抛物线C:y2=2x的焦点,点E在射线l:x=-$\frac{1}{2}$(y≥0)上,线段EF的垂直平分线与l交于点Q(-$\frac{1}{2}$,$\frac{3}{4}$),与抛物线C交于点P,则△PEQ的面积为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.a1=2×(1-$\frac{1}{4}$),
a2=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$),
a3=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$),
a4=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)(1-$\frac{1}{25}$),
,…,
an=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{(n+1)^{2}}$),
(1)求出a1,a2,a3,a4
(2)猜测an=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{(n+1)^{2}}$)的取值并且用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$-2$\overrightarrow{b}$=(2$\sqrt{3}$,-1),$\overrightarrow b-2\overrightarrow a=({-\sqrt{3},-1})$,则$\overrightarrow a$与$\overrightarrow b$的夹角是(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.以下四个命题:
①若函数y=ex-mx(m∈R)有大于零的极值点,则实数m>1;
②命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则$\frac{a}{b}$的值为-2或$-\frac{2}{3}$.
其中真命题的序号为①②③(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a>b>0,a+b=1,且x=(${\frac{1}{a}}$)b,y=log${\;}_{\frac{1}{ab}}}$ab,z=log${\;}_{\frac{1}{b}}}$a,则x、y、z的大小关系是(  )
A.y<z<xB.z<y<xC.x<y<zD.y<x<z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0,(n∈N*)的两根,且a1=1
(1)求证:数列{an-$\frac{1}{3}$×2n}是等比数列;
(2)求数列{an}的前n项和Sn
(3)若bn-mSn>0对任意的n∈N*都成立,求m的取值范围.

查看答案和解析>>

同步练习册答案