精英家教网 > 高中数学 > 题目详情
19.在△ABC中,D是BC的中点,AB=4,AC=3,则$\overline{AD}•\overline{BC}$=(  )
A.-7B.2C.$-\frac{7}{2}$D.$\frac{7}{2}$

分析 根据平面向量的线性表示与数量积的定义,计算即可.

解答 解:如图所示,

△ABC中,D是BC的中点,
∴$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$=$\frac{1}{2}$($\overrightarrow{AC}$-$\overrightarrow{AB}$),
∴$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$
=$\overrightarrow{AB}$+$\frac{1}{2}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$,
∴$\overline{AD}•\overline{BC}$=($\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{1}{2}$(${\overrightarrow{AC}}^{2}$-${\overrightarrow{AB}}^{2}$)
=$\frac{1}{2}$×(32-42
=-$\frac{7}{2}$.
故选:C.

点评 本题考查了平面向量的线性表示与数量积的运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an}的前n项和为Sn,若S9=27,则a4+a6=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)满足:对任意的x1、x2(x1≠x2),均有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,则(  )
A.$f({0.7^6})<f({log_{0.7}}6)<f({6^{0.5}})$B.f(60.5)<f(0.76)<f(log0.76)
C.$f({log_{0.7}}6)<f({0.7^6})<f({6^{0.5}})$D.$f({log_{0.7}}6)<f({6^{0.5}})<f({0.7^6})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,复数z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)为纯虚数,则a的值为(  )
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知锐角在△ABC中,b=10,c=5$\sqrt{6}$,C=60°求
(1)外接圆半径;         
(2)求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={x|y=lgx},$B=\left\{{x\left|{\frac{2x+1}{3-x}}\right.<0}\right\}$,则A∩B=(  )
A.$(-∞,-\frac{1}{2})$B.(3,+∞)C.$(-∞,-\frac{1}{2})∪(3,+∞)$D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设点P(x,y),x,y∈N且x+y≤4,则点P(x,y)的个数为(  )
A.12个B.13个C.14个D.15个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$x2+lnx,求函数f(x)在区间[1,e]上的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.以下四个命题:
①若函数y=ex-mx(m∈R)有大于零的极值点,则实数m>1;
②命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则$\frac{a}{b}$的值为-2或$-\frac{2}{3}$.
其中真命题的序号为①②③(写出所有真命题的序号).

查看答案和解析>>

同步练习册答案