分析 (1)由已知利用正弦定理即可得解外接圆半径R的值.
(2)由已知利用正弦定理可求sinB=$\frac{bsinC}{c}$的值,利用特殊角的三角函数值即可得解B的值.
解答 解:(1)∵锐角△ABC中,b=10,c=5$\sqrt{6}$,C=60°,
∴外接圆半径R=$\frac{c}{2sinC}$=$\frac{5\sqrt{6}}{2×\frac{\sqrt{3}}{2}}$=5$\sqrt{2}$.
(2)∵锐角△ABC中,b=10,c=5$\sqrt{6}$,C=60°,
∴sinB=$\frac{bsinC}{c}$=$\frac{10×\frac{\sqrt{3}}{2}}{5\sqrt{6}}$=$\frac{\sqrt{2}}{2}$,
∴B=$\frac{π}{4}$.
点评 本题主要考查了正弦定理在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要 | B. | 必要非充分 | ||
| C. | 充要条件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 71 | B. | 68 | C. | 69 | D. | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -7 | B. | 2 | C. | $-\frac{7}{2}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{10}$ | B. | $\frac{3}{10}$ | C. | -$\frac{2}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com