精英家教网 > 高中数学 > 题目详情
4.设函数f(x)=1nx+$\frac{a}{{x}^{2}}$.
(1)求函数f(x)在x=1时的切线方程及函数f(x)的单凋区间;
(2)求函数f(x)的零点个数.

分析 (1)求出函数的导数,计算f′(1),f(1),求出切线方程即可,通过讨论a的范围求出函数的单调区间;
(2)求出函数的导数,通过讨论a的范围,判断函数的零点个数即可.

解答 解:(1)f(x)=1nx+$\frac{a}{{x}^{2}}$,(x>0),
f′(x)=$\frac{1}{x}$-$\frac{2a}{{x}^{3}}$=$\frac{{x}^{2}-2a}{{x}^{3}}$,
f′(1)=1-2a,f(1)=a,
故切线方程是:y-a=(1-2a)(x-1),
即y=(1-2a)x+3a-1;
a≤0时,f′(x)>0,f(x)在(0,+∞)递增,
a>0时,令f′(x)>0,解得:x>$\sqrt{a}$,令f′(x)<0,解得:0<x<$\sqrt{a}$,
∴f(x)在(0,$\sqrt{a}$)递减,在($\sqrt{a}$,+∞)递增;
(2)f′(x)=$\frac{1}{x}$-$\frac{2a}{{x}^{3}}$=$\frac{{x}^{2}-2a}{{x}^{3}}$,
a≤0时,f(x)在(0,+∞)递增,
x→0时,f(x)→-∞,x→+∞时,f(x)→+∞,
故函数有1个零点,
a>0时,f(x)的最小值是f($\sqrt{a}$)=ln$\sqrt{a}$+1,
令ln$\sqrt{a}$+1=0,解得:a=$\frac{1}{{e}^{2}}$,
a>$\frac{1}{{e}^{2}}$时,f(x)min>0,函数无零点,
a=$\frac{1}{{e}^{2}}$时,f(x)min=0,函数1个零点,
a<$\frac{1}{{e}^{2}}$时,f(x)min<0,函数2个零点.

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知锐角在△ABC中,b=10,c=5$\sqrt{6}$,C=60°求
(1)外接圆半径;         
(2)求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点是F双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点,过左焦点F作直线与圆心为原点、半径为实半轴长的一半的圆相切于点E,直线FE交双曲线的右支于点P,点B是直线FE外任意一点,且2$\overrightarrow{BE}$=$\overrightarrow{BF}$+$\overrightarrow{BP}$,则双曲线的离心率为$\frac{{\sqrt{10}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.a1=2×(1-$\frac{1}{4}$),
a2=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$),
a3=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$),
a4=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)(1-$\frac{1}{25}$),
,…,
an=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{(n+1)^{2}}$),
(1)求出a1,a2,a3,a4
(2)猜测an=2×(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{(n+1)^{2}}$)的取值并且用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某商店购进12件同品牌的衣服,其中10件是正品,其余2件是次品,从中无放回地任取2件,则取出的2件衣服中,至少有1件是次品的概率是(  )
A.$\frac{1}{3}$B.$\frac{5}{33}$C.$\frac{10}{33}$D.$\frac{7}{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.以下四个命题:
①若函数y=ex-mx(m∈R)有大于零的极值点,则实数m>1;
②命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则$\frac{a}{b}$的值为-2或$-\frac{2}{3}$.
其中真命题的序号为①②③(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)是定义在R上的奇函数,且对任意的x∈R,f(x+2)=$\frac{1}{f(x)}$,当x∈[-2,0)时,f(x)=log2(x+3),则f(2017)-f(2015)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.M={x|2x2-5x-3=0},N={x|mx=1},若N⊆M,则实数m的取值集合是{0,-2,$\frac{1}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直角梯形ABCP如图①所示,其中∠ABC=∠BCD=90°,AB=BC=AD=CD=PD;现沿AD进行翻折,使得PD⊥DC,得到如图②所示的多面体ABCDPE,其中PD∥2EC,PD=2EC,PF=BF.

(1)求证:PD⊥EF;
(2)若PD=4,求多面体ABCDPE的体积.

查看答案和解析>>

同步练习册答案