精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABC﹣A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3.D是线段BC的中点.

(1)求直线DB1与平面A1C1D所成角的正弦值;
(2)求二面角B1﹣A1D﹣C1的大小的余弦值.

【答案】
(1)解:因为在直三棱柱ABC﹣A1B1C1中,AB⊥AC,

所以分别以AB、AC、AA1所在的直线为x轴、y轴、z轴,建立空间直角坐标系,

则A(0,0,0),B(2,0,0),C(0,4,0),A1(0,0,3),B1(2,0,3),C1(0,4,3),

因为D是BC的中点,所以D(1,2,0),

因为 ,设平面A1C1D的法向量

,即 ,取

所以平面A1C1D的法向量 ,而

所以

所以直线DB1与平面A1C1D所成角的正弦值为


(2)解:

设平面B1A1D的法向量

,即

,平面B1A1D的法向量

所以

二面角B1﹣A1D﹣C1的大小的余弦值


【解析】(1)分别以AB、AC、AA1所在的直线为x轴、y轴、z轴,建立空间直角坐标系,利用向量法能求出直线DB1与平面A1C1D所成角的正弦值.(2)求出平面B1A1D的法向量和平面B1A1D的法向量,利用向量法能求出二面角B1﹣A1D﹣C1的大小的余弦值.
【考点精析】根据题目的已知条件,利用空间角的异面直线所成的角的相关知识可以得到问题的答案,需要掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 如图,在四棱锥P﹣ABCD中,侧面PAD底面ABCD,侧棱PA=PD= ,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1) 求直线PB与平面POC所成角的余弦值;

(2)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an},a1=2,an+1=4an-3n+1,nN*.

(1)求证:数列{an-n}是等比数列;

(2)求数列{an}的前n项和Sn

(3)求证:不等式Sn+14Sn对任意n∈N*皆成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)

(1)根据以上数据完成下面的2×2列联表:

主食 蔬菜

主食 肉类

总计

50岁以下

50岁以上

总计

(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.

附参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},其前n项和为Sn
(1)若{an}是公差为d(d>0)的等差数列,且{ }也为公差为d的等差数列,求数列{an}的通项公式;
(2)若数列{an}对任意m,n∈N* , 且m≠n,都有 =am+an+ ,求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知圆的圆心坐标为,半径为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线l的参数方程为:为参数).

(1)求圆和直线l的极坐标方程;

(2)点的极坐标为,直线l与圆相交于AB,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},其前n项和为Sn
(1)若{an}是公差为d(d>0)的等差数列,且{ }也为公差为d的等差数列,求数列{an}的通项公式;
(2)若数列{an}对任意m,n∈N* , 且m≠n,都有 =am+an+ ,求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C的对边分别是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求证:△ABC为等腰三角形
(2)若△ABC的面积为8 .且sinB= ,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一块边长为的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.

(Ⅰ)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积表示为关于的函数,并标明其定义域;

(Ⅱ)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.

(1)请指出此时的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积

(2)若还需要在该正三棱柱形容器中放入一个金属球体,试求该金属球体的最大体积

查看答案和解析>>

同步练习册答案