精英家教网 > 高中数学 > 题目详情
△ABC中,内角A、B、C的对边分别为a、b、c,已知a、b、c成等比数列,且cosB=
3
4
BA
BC
=
3
2
,求S△ABC及a+c的值.
分析:
BA
BC
=
3
2
,结合已知及向量数量积的定义可求ac,然后由a,b,c成等比数列可求b,由余弦定理,b2=a2+c2-2accosB可求a+c,最后代入三角形的面积公式S△ABC=
1
2
acsinB
即可求解
解答:解:∵
BA
BC
=
3
2

∴accosB=
3
2

∵cosB=
3
4

∴ac=2
∵b2=ac=2
由余弦定理可得,b2=a2+c2-2accosB
∴a2+c2=5
即(a+c)2-2ac=5
∴a+c=3
∵sinB=
7
4

∴S△ABC=
1
2
acsinB
=
1
2
×2×
7
4
=
7
4
点评:本题主要考查了余弦定理及三角形的面积公式在求解三角形中的应用,解题的关键是熟练应用公式
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=
π
3

(Ⅰ)若△ABC的面积等于
3
,求a,b;
(Ⅱ)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C对边的边长分别是a、b、c,已知c=2,C=
π
3
,△ABC的面积是
3
,求边长a和b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武昌区模拟)在△ABC中,内角A、B、C对边长分别是a,b,c,已知c=2,C=
π
3

(I)若△ABC的面积等于
3
,求a,b

(II)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,若a=6,b=4,C=120°,则△ABC的面积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知C=
π
3

(1)若a=2,b=3,求边c;
(2)若c=
3
,sinC+sin(B-A)=sin2A,求△ABC的面积.

查看答案和解析>>

同步练习册答案