精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A、B、C对边的边长分别是a、b、c,已知c=2,C=
π
3
,△ABC的面积是
3
,求边长a和b.
分析:根据△ABC的面积是
3
,求得ab=4,再由余弦定理可得4=a2+b2-ab,解方程组可得a,b的值.
解答:解:由题意可得
3
=
1
2
absinC
=
1
2
•ab•
3
2
,∴ab=4.
再由余弦定理可得  c2=a2+b2-2abcosC,∴4=a2+b2-ab.
所以a=2,b=2.
点评:本题考查正弦定理、余弦定理的应用,求得ab=4  及4=a2+b2-ab,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案