精英家教网 > 高中数学 > 题目详情
当x∈R+时,下列函数中,最小值为2的是(  )
A、y=x2-2x+4
B、y=x+
16
x
C、y=
x2+2
+
1
x2+2
D、y=x+
1
x
分析:根据二次函数的最值可判断A不正确;
根据基本不等式可求出B的最小值,进而可判断B不正确;
根据基本不等式可判断最小值大于2,进而可判断C;
根据基本不等式的内容可验证最小值等于2,满足条件.
解答:解:∵y=x2-2x+4=(x-1)2+3,当x=1时,函数取到最小值3,故A不正确;
y=x+
16
x
≥2
16
x
=2×4=8,当x=4时,等号成立,即当x=4时函数取到最小值8,故B不正确;
y=
x2+2
+
1
x2+2
≥2
(x2+2)×
1
x2+2
=2
,当x2+2=1时等号成立,矛盾,即最小值大于2,故C不正确;
y=x+
1
x
≥2
1
x
=2,当x=1时等号成立,即当x=1时函数有最小值2,D正确;
故选D.
点评:本题主要考查基本不等式的应用.应用基本不等式时一定要验证“一正、二定、三相等”,这是基本不等式的基本条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知f(x)与g(x)是定义在R上的连续函数,如果f(x)与g(x)仅当x=0时的函数值为0,且f(x)≥g(x),那么下列情形不可能出现的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省嘉兴一中高二(下)3月月考数学试卷(理科)(解析版) 题型:选择题

已知f(x)与g(x)是定义在R上的连续函数,如果f(x)与g(x)仅当x=0时的函数值为0,且f(x)≥g(x),那么下列情形不可能出现的是( )
A.0是f(x)的极大值,也是g(x)的极大值
B.0是f(x)的极小值,也是g(x)的极小值
C.0是f(x)的极大值,但不是g(x)的极值
D.0是f(x)的极小值,但不是g(x)的极值

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆市南开中学高三总复习数学试卷(6)(解析版) 题型:选择题

已知f(x)与g(x)是定义在R上的连续函数,如果f(x)与g(x)仅当x=0时的函数值为0,且f(x)≥g(x),那么下列情形不可能出现的是( )
A.0是f(x)的极大值,也是g(x)的极大值
B.0是f(x)的极小值,也是g(x)的极小值
C.0是f(x)的极大值,但不是g(x)的极值
D.0是f(x)的极小值,但不是g(x)的极值

查看答案和解析>>

科目:高中数学 来源:2007年辽宁省高考数学试卷(理科)(解析版) 题型:选择题

已知f(x)与g(x)是定义在R上的连续函数,如果f(x)与g(x)仅当x=0时的函数值为0,且f(x)≥g(x),那么下列情形不可能出现的是( )
A.0是f(x)的极大值,也是g(x)的极大值
B.0是f(x)的极小值,也是g(x)的极小值
C.0是f(x)的极大值,但不是g(x)的极值
D.0是f(x)的极小值,但不是g(x)的极值

查看答案和解析>>

同步练习册答案