精英家教网 > 高中数学 > 题目详情
等差数列{an}中,a1=-2004,公差d=2,则(a12-a22)+(a32-a42)+…+(a20032-a20042)的值等于
4008
4008
分析:先由平方差公式把(a12-a22)+(a32-a42)+…+(a20032-a20042)等价转化为(a1-a2)(a1+a2)+)+(a3-a4)+(a3+a4)…+(a2003-a2004)(a2003+a2004),再由等差数列的性质进一步简化为-dS2004,由此能求出结果.
解答:解:∵等差数列{an}中,a1=-2004,公差d=2,
∴(a12-a22)+(a32-a42)+…+(a20032-a20042
=(a1-a2)(a1+a2)+)+(a3-a4)+(a3+a4)+…+(a2003-a2004)(a2003+a2004
=-dS2004
=-2×[2004× (-2004)-
2004×2003
2
×(-2)]

=4008.
故答案为:4008.
点评:本题考查等差数列的前n项和公式,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案