精英家教网 > 高中数学 > 题目详情
10.先把函数y=f(x)的图象向右移$\frac{π}{6}$个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的$\frac{2}{3}$,所得图象的解析式是y=2sin($\frac{1}{2}$x+$\frac{π}{3}$),求f(x)的解析式.

分析 由条件利用利用y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:由题意可得,把y=2sin($\frac{1}{2}$x+$\frac{π}{3}$)的图象纵坐标变为原来的$\frac{3}{2}$倍,
可得y=3sin($\frac{1}{2}$x+$\frac{π}{3}$)的图象;
再把所得图象的横坐标变为原来的到原来的$\frac{1}{2}$倍,y=3sin(x+$\frac{π}{3}$)的图象;
再把所得图象向左移$\frac{π}{6}$个单位,可得y=3sin(x+$\frac{π}{6}$+$\frac{π}{3}$)=y=3cosx的图象的图象,
即f(x)=3cosx.

点评 本题主要考查诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=3sinωx(ω>0)在区间[-$\frac{π}{5}$,-$\frac{π}{3}$]上的最小值是-3,则ω的最小值等于(  )
A.$\frac{9}{2}$B.$\frac{3}{2}$C.3D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的定义域和值域.
(1)y=f(x)=log3(x2-3x-4);
(2)y=log3(x2+4x+7).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=-cos(x+$\frac{π}{3}$)+2按向量$\overrightarrow{a}$平移所得图象的解析式为y=f(x),当y=f(x)为奇函数,向量$\overrightarrow{a}$可以是(-$\frac{π}{6}$,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点为F(-c,0),F′(c,0),c>0,过点F且平行于双曲线渐近线的直线与抛物线y2=4cx交于点P,若点P在以FF′为直径的圆上,则$\frac{{b}^{2}}{{a}^{2}}$=$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若将半径为2的半圆卷成一个圆锥,则它的体积为(  )
A.$\frac{\sqrt{3}π}{3}$B.$\sqrt{3}π$C.$\frac{\sqrt{5}}{3}π$D.$\sqrt{5}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在-180°~360°范围内,与2000°角终边相同的角为200°和-160°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$\frac{sinα+cosα}{sinα-cosα}=2$,则sin(α-5π)•cos(3π-α)等于(  )
A.$\frac{3}{4}$B.$\frac{3}{10}$C.±$\frac{3}{10}$D.-$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}的通项公式为an=(-1)n(2n-1)2,则其前50项之和S50=5000.

查看答案和解析>>

同步练习册答案