精英家教网 > 高中数学 > 题目详情

已知向量,其中的内角.
(Ⅰ)求角的大小;
(Ⅱ)若,且,求的长.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)对进行化简,可求的值,进而求出角;(Ⅱ)先求,再用余弦定理求出的长.
试题解析:解:(Ⅰ),         2分
所以,即,                    4分
(舍),
,所以.                                         7分
(Ⅱ)因为,所以. ①                         9分
由余弦定理
得,. ②                                  12分
由①②解得.                                       14分
考点:向量的数量积、三角函数的恒等变形、余弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,某市准备在一个湖泊的一侧修建一条直路,另一侧修建一条观光大道,它的前一段是以为顶点,轴为对称轴,开口向右的抛物线的一部分,后一段是函数时的图象,图象的最高点为,垂足为.

(1)求函数的解析式;
(2)若在湖泊内修建如图所示的矩形水上乐园,问:点落在曲线上何处时,水上乐园的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.




.
(1)从上述五个式子中选择一个,求出常数
(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和图象的对称轴方程
(2)求函数在区间上的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(1)求函数的最大值和最小值;
(2)设函数上的图象与轴的交点从左到右分别为,图象的最高点为,
的夹角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期为
(Ⅰ)求的解析式;
(Ⅱ)设的三边满足,且边所对的角为,求此时函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位有三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为.假定四点在同一平面上.
(1)求的大小;
(2)求点到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求的值;
(II)求函数的最小正周期及单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sin(ωx),其中常数ω>0
(1)令ω=1,判断函数F(x)=f(x)+f(x+)的奇偶性,并说明理由;
(2)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,对任意a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.

查看答案和解析>>

同步练习册答案