精英家教网 > 高中数学 > 题目详情

【题目】记max{x,y}= ,若f(x),g(x)均是定义在实数集R上的函数,定义函数h(x)=max{f(x),g(x)},则下列命题正确的是(
A.若f(x),g(x)都是单调函数,则h(x)也是单调函数
B.若f(x),g(x)都是奇函数,则h(x)也是奇函数
C.若f(x),g(x)都是偶函数,则h(x)也是偶函数
D.若f(x)是奇函数,g(x)是偶函数,则h(x)既不是奇函数,也不是偶函数

【答案】C
【解析】解:对于A,如f(x)=x,g(x)=﹣2x都是R上的单调函数,而h(x)= 不是定义域R上的单调函数,命题A错误;
对于B,如f(x)=x,g(x)=﹣2x都是R上的奇函数,
而h(x)= 不是定义域R上的奇函数,命题B错误;
对于C,当f(x)、g(x)都是定义域R上的偶函数时,
h(x)=man{f(x),g(x)}也是定义域R上的偶函数,命题C正确;
对于D,如f(x)=sinx是定义域R上的奇函数,g(x)=x2+2是定义域R上的偶函数,
而h(x)=g(x)=x2+2是定义域R上的偶函数,命题D错误.
故选:C.
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对函数的奇偶性的理解,了解偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的序号是
①BD∥平面CB1D1
②AC1⊥BD;
③AC1⊥平面CB1D1
④异面直线AD与CB1所成角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 经过点,左右焦点分别为,圆与直线相交所得弦长为2. 

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设是椭圆上不在轴上的一个动点, 为坐标原点,过点的平行线交椭圆两个不同的点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:关于x的方程x2+ax+2=0无实根,命题q:函数f(x)=logax在(0,+∞)上单调递增,若“p∧q”为假命题,“p∨q”真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式x2﹣2ax+a+2≤0的解集为M,若M[1,4],求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的非负半轴为极轴建立极坐标系,已知直线的参数方程为 (为参数),曲线的极坐标方程为,直线与曲线交于两点,与轴交于点.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知AB=2,cosB= (Ⅰ)若AC=2 ,求sinC的值;
(Ⅱ)若点D在边AC上,且AD=2DC,BD= ,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选做题】

A.[选修4-1:几何证明选讲]

如图,四边形是圆的内接四边形, 的延长线交的延长线于点.

求证: 平分.

B.[选修4-2:矩阵与变换]

已知变换 ,试写出变换对应的矩阵,并求出其逆矩阵.

C.[选修4-4:坐标系与参数方程]

在平面直角坐标系中,已知直线的参数方程为为参数),曲线的参数方程为为参数).若直线与曲线相交于两点,求线段的长.

D.[选修4-5:不等式选讲]

均为正数,且,求证 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)若恒成立,求的取值范围;

(2)证明:不论取何正值,总存在正数,使得当时,恒有.

查看答案和解析>>

同步练习册答案