分析 由题意f(x)增函数f(x)满足f(-x)=-f(x),又是奇函数,f(m+1)>f(-2m+1)等价于m+1>(-2m+1,从而求解m的范围.
解答 解:由题意:f(x)满足f(-x)=-f(x)可知f(x)是奇函数.
那么:f(m+1)+f(2m-1)>0等价于:f(m+1)>f(-2m+1)
又∵函数f(x)定义在[-3,3]上的增函数,
则有:$\left\{\begin{array}{l}{-3≤m+1≤3}\\{-3≤1-2m≤3}\\{1-2m<m+1}\end{array}\right.$
解得:0<m≤2
所以实数m的范围是(0,2].
点评 本题考查了函数的基本性质单调性和奇偶性的运用.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<1或x≥3} | B. | {x|x≤1或x>3} | C. | {x|x<1或x>3} | D. | {x|x≤1或x≥3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(0,2) | B. | (-2,0)∪(0,2) | C. | (-2,0)∪(2,+∞) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | c<a<b | C. | a<c<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{3}{2},4}]$ | B. | $[{2,\frac{9}{2}}]$ | C. | [-11,-1] | D. | [-3,7] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com