精英家教网 > 高中数学 > 题目详情
袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.
(1)若有放回地取3次,每次取一个球,求取出1个红球2个黑球的概率;
(2)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分,求得分ξ的分布列和数学期望.
考点:离散型随机变量的期望与方差,古典概型及其概率计算公式
专题:应用题,概率与统计
分析:(1)确定每次试验取出红球、黑球的概率,利用独立重复试验的概率公式,即可求取出1个红球2个黑球的概率;
(2)确定ξ的取值,求出相应的概率,可得分布列与数学期望.
解答: 解:(1)从袋子里有放回地取3次球,相当于做了3次独立重复试验,每次试验取出红球的概率为
3
7
,取出黑球的概率为
4
7
,设事件A=“取出1个红球2个黑球”,则P(A)=
C
1
3
3
7
•(
4
7
)2
=
144
343

(2)ξ的取值有四个:3、4、5、6,
P(ξ=3)=
C
0
3
C
3
4
C
3
7
=
4
35
,P(ξ=4)=
C
1
3
C
2
4
C
3
7
=
18
35
,P(ξ=5)=
C
2
3
C
1
4
C
3
7
=
12
35
,P(ξ=6)=
C
3
3
C
0
4
C
3
7
=
1
35

分布列为:
ξ 3 4 5 6
P
4
35
18
35
12
35
1
35
…(10分)
从而得分ξ的数学期望Eξ=3×
4
35
+4×
18
35
+5×
12
35
+6×
1
35
=
30
7
点评:本题考查概率的求解,考查离散型随机变量的分布列与数学期望,正确求概率是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中正确的是(  )
A、命题“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
B、命题“p∧q为真”是命题“p∨q为真”的必要不充分条件
C、若“am2≤bm2,则a≤b”的否命题为假命题
D、已知图象连续不断的函数y=f(x)在区间(a,b)(其中b-a=0.1)上有唯一零点,若“二分法”求这个零点(精确度0.0001)的近似值,则将区间(a,b)等分的次数至少是10次.

查看答案和解析>>

科目:高中数学 来源: 题型:

某超市在节日期间进行有奖促销,凡在该超市购物满200元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红色球,1个黄鱼球,1个蓝色球和1个黑色球.顾客不放回的每次摸出1个球,直至摸到黑色球停止摸奖.规定摸到红色球奖励10元,摸到黄色球或蓝色球奖励5元,摸到黑色球无奖励.
(Ⅰ)求一名顾客摸球3次停止摸奖的概率;
(Ⅱ)记X为一名顾客摸奖获得的奖求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

PM2.5是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米至75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,北方城市环保局从该市市区2013年全年每天的PM2.5监测数据中随机的抽取20天的数据作为样本,发现空气质量为一级的有4天,为二级的有10天,超标的有6天.
(1)从这20天的日均PM2.5监测数据中,随机抽出三天数据,求恰有一天空气质量达到一级的概率;
(2)从这20天的数据中任取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列和数学期望;
(3)根据这20天的PM2.5日均值来估计一年的空气质量情况,则一年(按365天计算)中平均有多少天的空气质量达到一级或二级.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数y=f(x),x∈D(D为定义域)图象上的点到坐标原点的距离为函数的y=f(x),x∈D的模.若模存在最大值,则称之为函数y=f(x),x∈D的长距;若模存在最小值,则称之为函数y=f(x),x∈D的短距.
(1)分别判断函数f1(x)=
1
x
与f2(x)=
-x2-4x+5
是否存在长距与短距,若存在,请求出;
(2)求证:指数函数y=ax(a>0,a≠1)的短距小于1;
(3)对于任意x∈[1,2]是否存在实数a,使得函数f(x)=
2x|x-a|
的短距不小于2且长距不大于4.若存在,请求出a的取值范围;不存在,则说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的所有棱长都是2,又AA1⊥平面ABC,D、E分别是AC、CC1的中点.
(Ⅰ)求证:AE⊥平面A1BD;
(Ⅱ)求几何体BCDB1C1A1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别为a,b,c给出下列结论:
①若A>B>C,则sinA>sinB>sinC;
②若
sinA
a
=
cosB
b
=
cosC
c
,则△ABC为等边三角形;
③若a=40,b=20,B=25°,则△ABC必有两解.
其中,结论正确的编号为
 
(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}和正项等比数列{bn}中,a1=b1=1,b2•b4=16,{an}的前8项和S8=92.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)令Tn=
a1
bn+1
+
a2
bn+1
+…+
an
b2n
•n∈N*,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=x2,则过点P(1,0)与曲线y=x2相切的切线方程为
 

查看答案和解析>>

同步练习册答案