精英家教网 > 高中数学 > 题目详情
在等差数列{an}和正项等比数列{bn}中,a1=b1=1,b2•b4=16,{an}的前8项和S8=92.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)令Tn=
a1
bn+1
+
a2
bn+1
+…+
an
b2n
•n∈N*,求Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)设{an}解得的公差为d,{bn}的公比为q,由已知列出d,q的方程组,求出d,q代入通项公式,求出{an}和{bn}的通项公式;
(Ⅱ)利用错位相减的求和方法求出Tn=
a1
bn+1
+
a2
bn+1
+…+
an
b2n
的值.
解答: 解:(Ⅰ)设{an}解得的公差为d,{bn}的公比为q,q>0
依题意
S8=8+
8×7
2
×d=92
,b2•b4=b32=q4=16
解得d=3,q=2.
∴an=1+(n-1)×3=3n-2,
bn=1×2n-1=2n-1
(Ⅱ)Tn=
1
2n
+
4
2n+1
+
7
2n+2
+…+
3n-2
22n-1

1
2
Tn=
1
2n+1
+
4
2n+2
+
7
2n+3
+…+
3n-5
22n-1
+
3n-2
22n

①-②得
1
2
Tn=
1
2n
+3(
1
2n+1
+
1
2n+2
+
1
2n+3
+…
+
1
22n-1
)-
3n-2
22n

=
1
2n
+3×
1
2n+1
(1-
1
2n-1
)
1-
1
2
-
3n-2
22n

=
4
2n
-
3n+4
22n

Tn
8
2n
-
6n+8
22n
点评:本题考查等差数列、等比数列通项的求法;考查数列求和的方法;错位相减及裂项相消是两种常考的求和方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“(a-1)(b-1)>0”是“a>1 且b>1”的(  )
A、充要条件
B、充分但不必要条件
C、必要但不充分条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.
(1)若有放回地取3次,每次取一个球,求取出1个红球2个黑球的概率;
(2)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分,求得分ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax(a是常数),函数g(x)=|f(x)|.
(Ⅰ)若a>0,求函数y=f(x)的单调递减区间;
(Ⅱ)求函数g(x)在区间[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx(a∈R).
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)的单调区间;
(3)若a=-1,问:当x>1时,f(x)<
2
3
x3是否恒成立,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=f(x)=5
x
,求:
(1)曲线与直线y=2x-4平行的切线的方程.
(2)过点P(0,5)且与曲线相切的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+cos2x.
(Ⅰ)求函数f(x)的最大值及相应x的取值集合;
(Ⅱ)将函数f(x)的图象向左平移
π
12
个单位得到函数g(x)的图象,试求函数g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R且m≠0,直线l:mx-(m2+1)y=4m,圆C:x2+y2-8x+4y+16=0,则直线l与圆C相交所得弦长的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

比较大小:cos(-
23π
5
 
cos(-
17π
4
).

查看答案和解析>>

同步练习册答案