精英家教网 > 高中数学 > 题目详情
有下列四种说法:
①函数y=
1-3x
的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},则A∩B={-1};
③函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
④已知A=B=R,对应法则f:x→y=
1
x+1
,则对应f是从A到B的映射.
其中你认为不正确的是______.
①因为3x>0,所以-3x<0,1-3x<1,所以0≤
1-3x
<1
,即函数y=
1-3x
的值域是{y|y≥0},所以①错误.
②因为A={x|x2-1=0}={-1,1},在集合B中,由
x2-2>0
x>0
x2-2=x
,解得x=2,即B={2},所以A∩B=∅,所以②错误.
③函数y=f(x)与函数y=f(-x)的图象关于y轴对称,即关于直线x=0对称,所以③正确.
④当x=-1时,y=
1
x+1
分母等于0,所以函数无意义,即不满足映射的定义,所以④错误.
故不正确的是①②④.
故答案为:①②④.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四种说法:
(1)命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”.
(2)若a,b∈R,则“log3a>log3b”是“(
1
3
)a<(
1
3
)b
”的必要不充分条件
(3)把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移
π
8
个单位即可得到函数y=sin(-2x+
π
4
)(x∈R)
的图象.
(4)若四边形ABCD是平行四边形,则
AB
=
DC
BC
=
DA

(5)两个非零向量
a
b
互相垂直,则|
a
| 2+|
b
|2=(
a
+
b
)2

其中正确说法个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四种说法:
①函数y=
1-3x
的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},则A∩B={-1};
③函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
④已知A=B=R,对应法则f:x→y=
1
x+1
,则对应f是从A到B的映射.
其中你认为不正确的是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

有下列四种说法:
①函数y=数学公式的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},则A∩B={-1};
③函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
④已知A=B=R,对应法则数学公式,则对应f是从A到B的映射.
其中你认为不正确的是________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省嘉兴一中高一(上)期中数学试卷(解析版) 题型:填空题

有下列四种说法:
①函数y=的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},则A∩B={-1};
③函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
④已知A=B=R,对应法则,则对应f是从A到B的映射.
其中你认为不正确的是   

查看答案和解析>>

同步练习册答案