精英家教网 > 高中数学 > 题目详情
在正四棱锥P-ABCD中,PA=
3
2
AB,M是BC的中点,G是△PAD的重心,则在平面PAD中经过G点且与直线PM垂直的直线有
 
条.
分析:根据正四棱锥P-ABCD中,PA=
3
2
AB,M是BC的中点,利用勾股定理即可求出PM与AB的关系,利用勾股定理证明PM⊥PN,利用线面垂直的判定定理可证PM⊥面PAD,因此可求平面PAD中经过G点且与直线PM垂直的直线的条数.
解答:精英家教网解:设正四棱锥的底面边长为a,则侧棱长为
3
2
a.
由PM⊥BC,
∴PM=
2
2
a.
连接PG并延长与AD相交于N点
则PN=
2
2
a,MN=AB=a,
∴PM2+PN2=MN2
∴PM⊥PN,又PM⊥AD,
∴PM⊥面PAD,
∴在平面PAD中经过G点的任意一条直线都与PM垂直.
故答案为无数.
点评:此题是个中档题.考查直线与平面垂直的判断和性质定理,以及空间中直线的位置关系,学生利用知识分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、在正三棱锥P-ABC中,D、E分别是AB、BC的中点,有下列四个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE;④平面PDE⊥平面ABC.其中正确的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正确结论的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱锥PABC中,D是侧棱PA的中点,O是底面ABC的中心,则下列四个结论中正确的是(  )

A.OD∥平面PBC                       B.ODPA

C.ODAC                                 D.PA=2OD

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图,在正三棱锥PABC中,D是侧棱PA的中点,O是底面ABC的中心,则下列四个结论中正确的是

A.OD∥平面PBC                                     B.ODPA

C.ODAC                                               D.PA=2OD

查看答案和解析>>

科目:高中数学 来源:2014届广东省高一下学期第一次阶段考试理科数学 题型:填空题

在正三棱锥P—ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:

①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.

其中正确结论的序号是                  .

 

查看答案和解析>>

同步练习册答案