精英家教网 > 高中数学 > 题目详情

已知函数的最大值为2.

(1)求的值及的最小正周期;
(2)在坐标纸上做出上的图像.

(1),;(2)见解析.

解析试题分析:(1)利用两角和的正弦公式和二倍角公式化简函数,将其化为一角一函数形式,然后根据最大值为2求解即可;(2)当时,,令得,,列表画出图象.
试题解析:(1) 
最大值为2
  
(2)列表






















画图如下:

考点:两角和的正弦公式、二倍角公式、三角函数图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设函数,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,且
(1)求角C的大小;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数.
(Ⅰ)求的最小正周期与最大值;
(Ⅱ)在中,分别是角的对边,若的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(1)求的单调减区间;(2)在锐角三角形ABC中,A、B、C的对边且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;
(2)若,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为,求f(θ)的值;
(2)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角中,.
(Ⅰ)求角的大小;
(Ⅱ)求的取值范围.

查看答案和解析>>

同步练习册答案