精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,  AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.

(I)证明:MC//平面PAD;
(II)求直线MC与平面PAC所成角的余弦值.
(1)根据题意,由于M为PB的中点,取PA中点E,能推理得到ME//AB,得到证明
(2)

试题分析:解:
(1)M为PB的中点,取PA中点E,连ME,DE
则ME//AB, 且ME=AB,又CD//AB, 且CD=AB, 四边形CDEM为平行四边形,
CM//ED,  CM面PAD,  MC//平面PAD
(2)平面ABCD, PABC
, BCAC
BC平面PAC,  平面PAC平面PBC, 取PC中点N,则MN//BC,
从而MN平面PAC,所以为直线MC与平面PAC所成角,记为
NC=,  MC
故直线MC与平面PAC所成角的余弦值为
点评:主要是考查了空间中线面平行以及线面角的求解的综合运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题“直线与平面有公共点”是真命题,那么下列命题:
①直线上的点都在平面内;
②直线上有些点不在平面内;
③平面内任意一条直线都不与直线平行.
其中真命题的个数是( )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥S-ABC,G1,G2分别为△SAB,△SAC的重心,则G1G2与△SBC,△ABC所在平面的位置关系是   (     )
A.垂直和平行B.均为平行C.均为垂直D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方形中,沿对角线将正方形折成一个直二面角,则点到直线的距离为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,几何体中,四边形为菱形,,面∥面,都垂直于面,且的中点.

(Ⅰ)求证:为等腰直角三角形;
(Ⅱ)求证:∥面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示三条不同的直线,表示平面,给出下列命题:
①若,则;     ②若,则
③若,则;   ④若,则
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体中,四边形是边长为2的正方形,平面平面,平面都与平面垂直,且都是正三角形。

(1)求证:
(2)求多面体的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是半圆的直径,是半圆上除外的一个动点,垂直于半圆所在的平面,

⑴证明:平面平面
⑵当三棱锥体积最大时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案