精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
(Ⅰ)见解析(Ⅱ)(Ⅲ)
把平面与平面垂直转化为直线和平面垂直.要证直线和平面垂直,依据相关判定定理转化为证明直线和直线垂直.求二面角,往往利用“作——证——求”的思路完成,作二面角是常常利用直线和平面垂直.第(Ⅲ)题,求解有难度,可以空间向量完成.
(Ⅰ)因为为正方形,所以.
因为平面ABC⊥平面AA1C1C,,且平面ABC平面AA1C1C
所以⊥平面ABC.
(Ⅱ)由(Ⅰ)知,⊥AC, ⊥AB.
由题意知,所以.
如图,以A为原点建立空间直角坐标系,则.
设平面的法向量为,则
,则,所以.
同理可得,平面的法向量为.
所以.
由题知二面角A1-BC1-B1为锐角,所以二面角A1-BC1-B1的余弦值为.

(Ⅲ)设是直线上的一点,且.
所以,解得,所以.
,即,解得.
因为,所以在线段上存在点D,使得,此时.
【考点定位】本题考查了平面与平面垂直的性质定理,直线和平面垂直的判定定理,考查了法向量、空间向量在立体几何中的应用和二面角的求法,考查了空间想象能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,菱形的边长为4,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.

(1)求证:平面
(2)求证:平面平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱

(1)当正视方向与向量的方向相同时,画出四棱锥的正视图(要求标出尺寸,并写出演算过程);
(2)若M为PA的中点,求证:求二面角
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,给出下列结论:
 ⇒


 ⇒.
其中正确的有(  )
A.1个B.2个 C.3个 D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱锥的侧棱两两垂直,且的中点.

(1)求异面直线所成的角的余弦值
(2)求二面角的余弦值
(3)点到面的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等腰梯形中,的中点.将梯形旋转,得到梯形(如图).

(1)求证:平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,  AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.

(I)证明:MC//平面PAD;
(II)求直线MC与平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形, ,分别为的中点,且.

(1)求证: ;
(2)求异面直线所成的角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面和直线,给出条件:①;②;③;④;⑤.为使,应选择下面四个选项中的条件(   )
A.①⑤B.①④C.②⑤D.③⑤

查看答案和解析>>

同步练习册答案