精英家教网 > 高中数学 > 题目详情
已知关于x的函数fn(x)=cosnx+cosn(x+
3
)+cosn(x+
3
),其中n∈N*
(1)求fn(0)和fn
π
2
);
(2)求证:对任意x∈R,f2(x)为定值;
(3)对任意x∈R,是否存在最大的正整数n,使得函数y=fn(x)为定值?若存在,求出n的最大值;若不存在,请说明理由.
考点:三角函数中的恒等变换应用
专题:三角函数的图像与性质
分析:(1)根据条件直接求fn(0)和fn
π
2
);
(2)根据三角函数关系式进行化简即可证明对任意x∈R,f2(x)为定值;
(3)根据三角函数的关系式进行化简,即可得到结论.
解答: 解:(1)fn(0)=1+2(-
1
2
)n
fn(
π
2
)=(-
3
2
)n+(
3
2
)n

(2)对任意x∈Rf1(x)=cosx+cos(x+
3
)+cos(x+
3
)
=cosx-
1
2
cosx-
3
2
sinx-
1
2
cosx+
3
2
sinx=0

cos2x=
1
2
(1+cos2x)
,故f2(x)=
1
2
(3+f1(2x))=
3
2

(3)由于cos4x=
1
4
(1+2cos2x+cos22x)

f4(x)=
1
4
(3+2f1(2x)+f2(2x))=
9
8
,即n=4时,y=fn(x)为定值.
当n为奇数,且n≥3时,由(1)得:fn(0)=1+2(-
1
2
)n=1-
1
2n-1
>0
,而fn(
π
2
)=(-
3
2
)n+(
3
2
)n=0
,即fn(0)≠fn(
π
2
)
.故y=fn(x)不可能为定值.
当n为偶数,且n≥6时,由(1)得:fn(0)=1+2(-
1
2
)n=1+
1
2n-1
>1
.而(
3
2
)n
关于n单调递减,
fn(
π
2
)=(-
3
2
)n+(
3
2
)n=2(
3
2
)n≤2(
3
2
)6=
27
32
<1
.即fn(0)≠fn(
π
2
)
,故y=fn(x)不可能为定值.
综上,存在最大的正整数n=4,使得对任意的x∈R,y=fn(x)为定值.
点评:本题主要考查三角函数式恒等变化,考查学生的运算能力,综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①设f(x)是定义在(-a,a)(a>0)上的偶函数,且f′(0)存在,则f′(0)=0.
②设函数f(x)是定义在R上的可导函数,则函数f(x)•f(-x)的导函数为偶函数.
③方程xex=2在区间(0,1)内有且仅有一个实数根.
其中为真命题的是(  )
A、①②③B、①②C、②③D、①③

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各式中正确的个数为(  )
①sin230°+cos260°+sin30°cos60°=
3
4

②sin220°+cos250°+sin20°cos50°=
3
4

③sin215°+cos245°+sin15°cos45°=
3
4

④sin280°+cos270°-sin80°cos70°=
3
4
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
+
3
x
)n
展开式中,各项系数的和与其各项二项式系数的和之比为64,则展开式中的常数项等于(  )
A、135B、270
C、540D、1218

查看答案和解析>>

科目:高中数学 来源: 题型:

假设数学测验的成绩都是正整数,甲、乙两人某次数学测验成绩都是两位正整数,且十位数字都是8,求甲、乙两人此次数学成绩的差的绝对值不超过2的概率.(画图解答)

查看答案和解析>>

科目:高中数学 来源: 题型:

今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P(单位:mg/L)与过滤时间t(单位:小时)间的关系为P(t)=P0e-k t(P0,k均为非零常数,e为自然对数的底数),其中P0为t=0时的污染物数量.若经过5小时过滤后还剩余90%的污染物.
(Ⅰ)求常数k的值;
(Ⅱ)试计算污染物减少到40%至少需要多少时间(精确到1小时,参考数据:ln0.2≈-1.61,ln0.3≈-1.20,ln0.4=-0.92,ln0.5=-0.69,ln0.9≈-0.11).

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数a,b,c满足
5b≥2(a+c)
b2=ac
a>0
,若
5a+8b+4c
a+b
的最大值和最小值分别为M,m,则M+m的值为(  )
A、9
B、
32
3
C、
49
3
D、19

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为可导偶函数,且f(x+
1
2
)=-f(x),则曲线y=f(x)在x=1处的切线的倾斜角为(  )
A、0
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=e an-an-1,求证:0<an+1<an

查看答案和解析>>

同步练习册答案