精英家教网 > 高中数学 > 题目详情
假设数学测验的成绩都是正整数,甲、乙两人某次数学测验成绩都是两位正整数,且十位数字都是8,求甲、乙两人此次数学成绩的差的绝对值不超过2的概率.(画图解答)
考点:列举法计算基本事件数及事件发生的概率
专题:概率与统计
分析:设甲的成绩为x,乙的成绩为y,则(x,y)对应如图所示的正方形ABCD及其内部的整数点,其中满足|x-y|≤2的(x,y)对应的点如图阴影部分(含边界)的整数点,问题得以解决
解答: 解:设甲的成绩为x,乙的成绩为y,x,y∈{80,81,82,••,89},
则(x,y)对应如图所示的正方形ABCD及其内部的整数点,共有10×10=100,
其中满足|x-y|≤2的(x,y)对应的点如图阴影部分(含边界)的整数点,共有100-7×8=44,
故所求概率为P=
44
100
=
11
25
点评:本题考查了概率公式的计算,关键是画出图象,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右顶点为A(a,0),离心率为
5
3
,过点A的直线交椭圆于另一点B,若AB的中点坐标为(1,-
2
2
3
),则E的方程为(  )
A、
x2
18
+
y2
10
=1
B、
x2
18
+
y2
8
=1
C、
x2
9
+
y2
5
=1
D、
x2
9
+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年某时刻,在钓鱼岛附近的海岸A处发现北偏东45°方向,距A处(
3
-1)海里的B处有一艘日本走私船,在A处北偏西75°方向,距A处2海里的C处的中国巡逻舰,奉命以10
3
海里/时的速度追截日本走私船,此时日本走私船正以10海里/时的速度,从B处向北偏东30°方向逃窜.问:中国巡逻舰沿什么方向行驶才能最快截获日本走私船?并求出所需时间.(改编题)

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
-sinx
+
cosx
定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解某种产品的质量,抽取容量为30的样本,检测结果为一级品5件,二级品8件.三级品13件,其余的部是次品.已知样本频率分布表的一部分如图所示:
 产品 频数 频率
 一级品 5 0.17
 二级品 8 
 三级品 13 0.43
 次品  0.13
(1)请将样本频率分布表补充完整,并画出样本频率分布条形图;
(2)任意抽取一件产品,试估计它是一级品或二级品的概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数fn(x)=cosnx+cosn(x+
3
)+cosn(x+
3
),其中n∈N*
(1)求fn(0)和fn
π
2
);
(2)求证:对任意x∈R,f2(x)为定值;
(3)对任意x∈R,是否存在最大的正整数n,使得函数y=fn(x)为定值?若存在,求出n的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
ax+bx≤0
logc(x+
1
9
)x>0
的部分图象如图所示
(1)求函数f(x)的表达式;
(2)探讨关于x的方程f2(x)+b|f(x)|-1=0(b∈R)根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,2),B(
1
2
5
2
)是函数f(x)=
ax2+b
x
的图象上的两点.
(1)求函数f(x)的解析式并写出定义域;
(2)判断f(x)在区间(-∞,-1)上的单调性,并用定义法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(0,+∞)上的函数f(x)=
xeax,0<x<1
2x+1,x≥1
,(其中e为自然对数的底数).
(1)若函数f(x)在x=1处连续,求实数a的值;
(2)设数列{an}的各项均大于1,且an+1=f(2an-1)-1,a1=m,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案