精英家教网 > 高中数学 > 题目详情
2013年某时刻,在钓鱼岛附近的海岸A处发现北偏东45°方向,距A处(
3
-1)海里的B处有一艘日本走私船,在A处北偏西75°方向,距A处2海里的C处的中国巡逻舰,奉命以10
3
海里/时的速度追截日本走私船,此时日本走私船正以10海里/时的速度,从B处向北偏东30°方向逃窜.问:中国巡逻舰沿什么方向行驶才能最快截获日本走私船?并求出所需时间.(改编题)
考点:解三角形的实际应用
专题:应用题,解三角形
分析:设缉私船追上走私船需t小时,进而可表示出CD和BD,进而在△ABC中利用余弦定理求得BC,进而在△BCD中,根据正弦定理可求得sin∠BCD的值,进而求得∠BDC=∠BCD=30°进而求得BD,进而利用BD=10t求得t.
解答: 解:如图所示,设缉私船追上走私船需t小时,则有CD=10
3
t,BD=10t.
在△ABC中,
∵AB=
3
-1,AC=2,
∠BAC=45°+75°=120°.
根据余弦定理可求得BC=
(
3
-1)2+22-2×(
3
-1)×2×(-
1
2
)
=
6

∠CBD=90°+30°=120°.
在△BCD中,根据正弦定理可得
sin∠BCD=
10t•sin120°
10
3
t
=
1
2

∵∠CBD=120°,∴∠BCD=30°,∠BDC=30°,
∴BD=BC=
6
,则有10t=
6
,t=
6
10
(小时).
∴缉私船沿北偏东60°方向,需
6
10
小时才能追上走私船.
点评:本题主要考查了解三角形的实际应用.考查了运用三角函数的基础知识解决实际的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

根据下列条件分别写出直线的方程,并化为一般式方程:
(1)斜率为
3
,并且经过点A(5,3);
(2)过点B(-3,0),且垂直于x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

在椭圆
x2
a2
+
y2
b2
=1(a>b>0)上取一点,P与长轴两端点A、B的连线分别交短轴所在直线于M,N两点,设O为原点,求证:|OM|•|ON|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间中两两垂直的平面最多有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,2]上递增的二次函数f(x)满足f(2+x)=f(2-x),且f(a)≥f(0),则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各式中正确的个数为(  )
①sin230°+cos260°+sin30°cos60°=
3
4

②sin220°+cos250°+sin20°cos50°=
3
4

③sin215°+cos245°+sin15°cos45°=
3
4

④sin280°+cos270°-sin80°cos70°=
3
4
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B、C、D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),某车主第一个号码(从左到右)只想在数字3、5、6、8、9中选择,其他号码只想在1、3、6、9中选择,则他的车牌号码可选的所有可能情况有.(  )
A、180种B、360种
C、720种D、960种

查看答案和解析>>

科目:高中数学 来源: 题型:

假设数学测验的成绩都是正整数,甲、乙两人某次数学测验成绩都是两位正整数,且十位数字都是8,求甲、乙两人此次数学成绩的差的绝对值不超过2的概率.(画图解答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 
1
3
|sin(x-
π
4
)|.
(1)求它的定义域和值域.
(2)判断它的奇偶性,并求出它的单调区间.

查看答案和解析>>

同步练习册答案