精英家教网 > 高中数学 > 题目详情
过直线x+y-2
2
=0上点P作圆x2+y2=1的两条切线,切点为A,B若△PAB为等边三角形,则点P的坐标是
2
2
2
2
分析:根据题意画出相应的图形,设P的坐标为(a,b),由PA与PB为圆的两条切线,根据切线的性质得到OA与AP垂直,OB与BP垂直,再由切线长定理得到PO为角平分线,根据两切线的夹角为60°,求出∠APO和∠BPO都为30°,在直角三角形APO中,由半径AO的长,利用30°角所对的直角边等于斜边的一半求出OP的长,由P和O的坐标,利用两点间的距离公式列出关于a与b的方程,记作①,再由P在直线x+y-2
2
=0上,将P的坐标代入得到关于a与b的另一个方程,记作②,联立①②即可求出a与b的值,进而确定出P的坐标.
解答:解:根据题意画出相应的图形,如图所示:
直线PA和PB为过点P的两条切线,且∠APB=60°,
设P的坐标为(a,b),连接OP,OA,OB,
∴OA⊥AP,OB⊥BP,PO平分∠APB,
∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,
又圆x2+y2=1,即圆心坐标为(0,0),半径r=1,
∴OA=OB=1,
∴OP=2AO=2BO=2,∴
a2+b2
=2,即a2+b2=4①,
又P在直线x+y-2
2
=0上,∴a+b-2
2
=0,即a+b=2
2
②,
联立①②解得:a=b=
2

则P的坐标为(
2
2
).
故答案为:(
2
2
点评:此题考查了圆的切线方程,涉及的知识有:切线的性质,切线长定理,含30°直角三角形的性质,以及两点间的距离公式,利用了数形结合的思想,根据题意画出相应的图形是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,一个顶点为B(0,-1),且其右焦点到直线x-y+2
2
=0
的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为k(k≠0),且过定点Q(0,
3
2
)
的直线l,使l与椭圆交于两个不同的点M、N,且|BM|=|BN|?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=r2(r>0)与直线x-y+2
2
=0相切.
(1)求圆O的方程;
(2)过点(1,
3
3
)的直线l截圆所得弦长为2
3
,求直线l的方程;
(3)设圆O与x轴的负半轴的交点为A,过点A作两条斜率分别为k1,k2的直线交圆O于B,C两点,且k1k2=-2,试证明直线BC恒过一个定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)过直线x+y-2
2
=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是
2
2
2
2

查看答案和解析>>

科目:高中数学 来源:江西 题型:填空题

过直线x+y-2
2
=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是______.

查看答案和解析>>

同步练习册答案