精英家教网 > 高中数学 > 题目详情

【题目】椭圆C: =1(a>b>0)的中心在原点,焦点在x轴上,焦距为2,且与椭圆x2+ =1有相同离心率,直线l:y=kx+m与椭圆C交于不同的A,B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆C上存在点Q,满足 ,(O为坐标原点),求实数λ取值范围.

【答案】解:( I)由已知可 解得 ,∴b=1.
所求椭圆C的方程
( II)由 得(1+2k2)x2+4kmx+2m2﹣2=0,
∴△=16k2m2﹣4(1+2k2)(2m2﹣2)=8(1+2k2﹣m2).
由直线直线l与椭圆C交于不同的A,B两点,有△>0,∴1+2k2>m2
设点A(x1 , y1),B(x2 , y2),则
于是
当m=0时,易知点A,B关于原点对称,则λ=0;
当m≠0时,易知点A,B不关于原点对称,则λ≠0.
,得
∵Q点在椭圆上,∴
化简得4m2(1+2k2)=λ2(1+2k22
∵1+2k2≠0,∴4m22(1+2k2).
由①②两式可得λ2<4,∴﹣2<λ<2且λ≠0.
综上可得实数λ的取值范围是﹣2<λ<2
【解析】(Ⅰ)利用已知条件列出椭圆几何量的方程组,求解a,b,即可求椭圆C的方程;(Ⅱ)联立直线与椭圆方程,利用韦达定理,结合向量关系,推出结果即可.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,则输出S的值为(

A.2016
B.2
C.
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N* , 总有b1b2b3…bn1bn=an+2成立.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=(﹣1)n ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一块地皮,其中 是直线段,曲线段是抛物线的一部分,且点是该抛物线的顶点, 所在的直线是该抛物线的对称轴.经测量, km, km, .现要从这块地皮中划一个矩形来建造草坪,其中点在曲线段上,点 在直线段上,点在直线段上,设km,矩形草坪的面积为km2

(1)求,并写出定义域;

(2)当为多少时,矩形草坪的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在上的函数满足:对任意的,当时,都有,则称是“非減函数”.

(1)若是“非減函数”,求的取值范围;

(2)若为周期函数,且为“非减函数”,证明是常值函数;

(3)设恒大于零,是定义在R上、恒大于零的周期函数,的最大值。函数。证明:“是周期函数”的充要条件“是常值函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学城校区与本部校区之间的驾车单程所需时间为只与道路畅通状况有关,对其容量为500的样本进行统计,结果如下:

(分钟)

25

30

35

40

频数(次)

100

150

200

50

以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.

(1)求的分布列与

(2)某天有3位教师独自驾车从大学城校区返回本部校区,记表示这3位教师中驾车所用时间少于的人数,求的分布列与

(3)下周某天张老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求张老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其中左焦点(-2,0).

1) 求椭圆C的方程;

2) 若直线y=x+m与椭圆C交于不同的两点AB,且线段AB的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 =1(a>b>0)的离心率为e= ,且过点(1, ).抛物线C2:x2=﹣2py(p>0)的焦点坐标为(0,﹣ ).
(Ⅰ)求椭圆C1和抛物线C2的方程;
(Ⅱ)若点M是直线l:2x﹣4y+3=0上的动点,过点M作抛物线C2的两条切线,切点分别为A,B,直线AB交椭圆C1于P,Q两点.
(i)求证直线AB过定点,并求出该定点坐标;
(ii)当△OPQ的面积取最大值时,求直线AB的方程.

查看答案和解析>>

同步练习册答案