【题目】2016年1月2日凌晨某公司公布的元旦全天交易数据显示,天猫元旦当天全天的成交金额为315.5亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了1月1日100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.
![]()
(I)先求出
的值,再将如图4所示的频率分布直方图绘制完整;
(II)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,
购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据
此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
![]()
参考数据:
![]()
参考公式:
,其中
.
【答案】(I)
;(II)列联表见解析,能在犯错误的概率不超过
的前提下认为网购金额超过
元与网龄在
年以上有关.
【解析】
试题分析:(I)
以下频率为
,所以网购金额在
的频率为
,即
,且
,从而
,
,由此可画出频率分布直方图;(II)根据数据填写好表格,代入公式计算得
,能在犯错误的概率不超过
的前提下认为网购金额超过
元与网龄在
年以上有关.
试题解析:
(I)因为网购金额在2000元以上(不含2000元)的频率为0.4,
所以网购金额在
的频率为
,
即
,且
,
从而
,
,相应的频率分布直方图如图3所示:
![]()
(II)相应的
列联表为:
![]()
由公式
,
因为
,
所以据此列联表判断,在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)若函数
的图象在点
处的切线的倾斜角为
,且函数
当且仅当在
处取得极值,其中
为
的导函数,求
的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是边长为3的正方形,
平面
,
平面
,
.
![]()
(1)证明:平面
平面
;
(2)在
上是否存在一点
,使平面
将几何体
分成上下两部分的体积比为
?若存在,求出点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平面
平面
,四边形
是正方形,四边形
是菱形,且
,
,点
、
分别为边
、
的中点,点
是线段
上的动点.
![]()
(1)求证:![]()
;
(2)求三棱锥
的体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在
上为增函数,且
,
为常数,
.
(1)求
的值;(2)若
在
上为单调函数,求
的取值范围;
(3)设
,若在
上至少存在一个
,使得
成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为1,P为BC的中点,Q为线段
上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_________(写出所有正确命题的编号)。
![]()
①当
时,S为四边形
②当
时,S为等腰梯形
③当
时,S与
的交点R满足![]()
④当
时,S为六边形
⑤当
时,S的面积为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.
![]()
(1)求证:GH∥平面CDE;
(2)若CD=2,DB=4
,求四棱锥F—ABCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com