精英家教网 > 高中数学 > 题目详情
9.如果命题“p且q”是假命题,“¬q”也是假命题,则(  )
A.命题“p”为真命题,命题“q”为假命题
B.命题“p”为真命题,命题“q”为真命题
C.命题“p”为假命题,命题“q”为假命题
D.命题“p”为假命题,命题“q”为真命题

分析 根据复合命题“p且q”是假命题,“¬q”是假命题判断出p,q的真假即可.

解答 解:由“p且q”是假命题,“¬q”是假命题得:
p,q至少有一个为假命题,且q为真命题,
故选:D.

点评 本题考查了复合命题的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知集合A=R,B=R,若f:x→2x-1是从集合A到B的一个映射,则B中的元素3对应A中的元素为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow a=3\overrightarrow{e_1}-2\overrightarrow{e_2},\overrightarrow b=4\overrightarrow{e_1}+\overrightarrow{e_2}$,其中$\overrightarrow{e_1}=({1,0}),\overrightarrow{e_2}=({0,1})$,求:
(1)$\overrightarrow a•\overrightarrow b$;$|{\overrightarrow a+\overrightarrow b}$|;
(2)$\overrightarrow a$与$\overrightarrow b$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}中,a1=a2=1,an+2=$\left\{\begin{array}{l}2{a_n},n为偶数\\{a_n}+1,n为奇数\end{array}$,设Tn=a1+a3+…+a2n-1,若Tn=a10-1,则n等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$tanα=-\frac{1}{2}$,则$\frac{{{{sin}^2}α}}{{{{sin}^2}α-sinαcosα-2{{cos}^2}α}}$的值为-$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知${(\sqrt{x}-\frac{2}{x^2})^n}$(n∈N*)的展开式中第五项的系数与第三项的系数的比是10:1.
(1)求在展开式中含x${\;}^{\frac{3}{2}}$的项;
(2)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数y=f(x),x∈R,给出下列4个命题:
①若f(1+2x)=f(1-2x),则f(x)的图象关于直线x=1对称;
②若f(x)为偶函数,且f(x+2)=-f(x),则f(x)的图象关于直线x=2对称;
③若f(x)为奇函数,且f(x)=f(-x-2),则f(x)的图象关于直线x=1对称;
④函数y=f(x-2)与y=f(2-x)的图象关于直线x=2对称.
其中正确命题的代号依次为①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.关于x的不等式ax2+(a-2)x-2≥0(a∈R)
(1)已知不等式的解集为(-∞,-1]∪[2,+∞),求a的值;
(2)解关于x的不等式ax2+(a-2)x-2≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.比较logx(2x)与logx(3-2x)的大小.

查看答案和解析>>

同步练习册答案