精英家教网 > 高中数学 > 题目详情
若动直线与函数的图像分别交于两点,则的最大值为         
2

试题分析:构造函数F(x)=f(x)-g(x),根据辅助角公式,对函数的解析式进行化简,再根据正弦函数求出其最值,即可得到答案.则可知当a=0时,F(x)取最大值2,故|MN|的最大值为2,故答案为:2.
点评:本题考查的知识是正弦函数的图象,余弦函数的图象,其中构造函数F(x)=f(x)-g(x),将距离的最大值问题转化为函数的最值问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(Ⅰ)设是定义在实数集R上的函数,满足,且对任意实数a,b有
(Ⅱ)设函数满足

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数           
(2)=          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义运算,函数图像的顶点是,且成等差数列,则    (    )
A.0B.-14 C.-9D.-3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)设函数,求函数的单调区间;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:在函数的图象上,以为切点的切线的倾斜角为
(Ⅰ)求的值;
(Ⅱ)是否存在最小的正整数,使得不等式对于恒成立?如果存在,请求出最小的正整数;如果不存在,请说明理由;
(Ⅲ)求证:).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义“”为双曲正弦函数,“”为双曲余弦函数,它们与正、余弦函数有某些类似的性质,如:等.请你再写出一个类似的性质:               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在上的函数满足,且,若有穷数列)的前项和等于,则等于( )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案