精英家教网 > 高中数学 > 题目详情

已知函数
(1)求的解集;
(2)设函数,若对任意的都成立,求的取值范围.

(1);(2).

解析试题分析:本题主要考查绝对值不等式的解法、分段函数图象、直线图象等基础知识,考查学生的转化能力、计算能力和数形结合思想.第一问,先将被开方数写成完全平方式,开方需要加绝对值,解绝对值不等式,利用零点分段法去掉绝对值符号,解不等式组;第二问,“对任意的都成立”转化为“的图象恒在图象的上方”利用零点分段法将绝对值去掉,转化成分段函数,画出分段函数图象,而恒过(3,0)点,将的直线绕(3,0)点旋转,找出符合题意的位置,得到k的取值范围.
试题解析:(1)

①或②或
解得不等式①:;②:无解③:
所以的解集为.                       5分
(2)的图象恒在图象的上方

图象为恒过定点,且斜率变化的一条直线作函数图象如图,其中,∴
由图可知,要使得的图象恒在图象的上方
∴实数的取值范围为.      10分

考点:绝对值不等式的解法、分段函数图象、直线图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a是常数,a∈R)
(1)当a=1时求不等式的解集.
(2)如果函数恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数,.
(1)当时,求曲线在点处的切线方程;
(2)是否存在实数,使的极大值为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数的零点;
(2)若函数在区间上恰有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,用表示时的函数值中整数值的个数.
(1)求的表达式.
(2)设,求.
(3)设,若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处切线方程为.
(1)求的值;
(2)讨论的单调性,并求的极小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若,求x的范围;
(2)求的最大值以及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.
(1)求函数f(x)的表达式;
(2)若方程f(x)=x+a(a∈R)至少有两个不相同的实数根,求a取值的集合.

查看答案和解析>>

同步练习册答案