精英家教网 > 高中数学 > 题目详情
在正三棱锥A-BCD中,E,F分别是AB,BC的中点,EF⊥DE且BC=
2
,若此正三棱锥的四个顶点都在球O的面上,则球O的体积是(  )
A.
3
6
π
B.
3
2
π
C.
3
3
π
D.3
3
π

精英家教网
∵EFAC,EF⊥DE
∴AC⊥DE
∵AC⊥BD(正三棱锥性质)
∴AC⊥平面ABD
所以正三棱锥A-BCD是正方体的一个角,AB=1,
从而得此正三棱锥的外接球即是相应的正方体的外接球,此正方体的面对角线为
2
,边长为1.
正方体的体对角线是
1+1+1
=
3

故外接球的直径是
3
,半径是
3
2

故其体积是
4
3
πR3
=
3
×(
3
2
)
3
=
3
2
π

故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正三棱锥A-BCD中,E、F是AB、BC的中点,EF⊥DE,若BC=a,则正三棱锥A-BCD的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥A-BCD中,E,F分别是AB,BC的中点,EF⊥DE且BC=
2
,若此正三棱锥的四个顶点都在球O的面上,则球O的体积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱锥A-BCD中,底面正三角形BCD的边长为2,点E是AB的中点,AC⊥DE,则正三棱锥A-BCD的体积是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥A-BCD中,E、F分别为棱AB、CD的中点,设EF与AC所成角为α,EF与BD所成角为β,则α+β等于
π
2
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在正三棱锥A-BCD中,E,F分别为BD,AD的中点,EF⊥CF,则直线BD与平面ACD所成的角为
 

查看答案和解析>>

同步练习册答案