分析 (1)由an=$\frac{1}{2n-1}$,n∈N*,则$\frac{{a}_{n}+2}{{a}_{n}}$=$\frac{\frac{1}{2n-1}+2}{\frac{1}{2n-1}}$=4n-1,数列{$\frac{{a}_{n}+2}{{a}_{n}}$}是以3为首项,以4为公差的等差数列,根据等差数列前n项和公式,即可求得Sn;
(2)由bn=anan+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),采用“裂项法”,即可求得{bn}的前n项和Tn.
解答 解:(1)由an=$\frac{1}{2n-1}$,n∈N*,
∴$\frac{{a}_{n}+2}{{a}_{n}}$=$\frac{\frac{1}{2n-1}+2}{\frac{1}{2n-1}}$=4n-1,
∴数列{$\frac{{a}_{n}+2}{{a}_{n}}$}是以3为首项,以4为公差的等差数列,
∴数列{$\frac{{a}_{n}+2}{{a}_{n}}$}的前n项和Sn=$\frac{(3+4n-1)n}{2}$=2n2+n,
(2)bn=anan+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴{bn}的前n项和Tn,Tn=b1+b2+b3+…+bn,
=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)],
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$),
=$\frac{n}{2n+1}$,
Tn=$\frac{n}{2n+1}$.
点评 本题考查等差数列前n项和公式,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,π) | B. | [0,$\frac{π}{4}$] | C. | [0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π) | D. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{6}$,$\frac{π}{6}$] | B. | [2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$](k∈Z) | ||
| C. | [2kπ-30°,2kπ+30°](k∈Z) | D. | (2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$)((k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com