精英家教网 > 高中数学 > 题目详情
18.已知集合A={y|y=-x2-2x},B={x|y=x+1},则A∩B=(-∞,1].

分析 求出A中y的范围求出A,求出B中x的范围确定出B,找出A与B的交集即可.

解答 解:由A中y=-x2-2x=-(x+1)2+1≤1,得到A=(-∞,1],
由B中y=x+1,得到x∈R,即B=R,
则A∩B=(-∞,1],
故答案为:(-∞,1]

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\frac{{{x^2}-2x+1}}{x}$在[$\frac{1}{2}$,3]的最小值为(  )
A.$\frac{1}{2}$B.$\frac{4}{3}$C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下面各组函数中为相同函数的是(  )
A.f(x)=$\sqrt{(x-1)^{2}}$,g(x)=x-1B.f(x)=x0,g(x)=13x
C.f(x)=3x,g(x)=($\frac{1}{3}$)-xD.f(x)=x-1,g(x)=$\frac{{x}^{2}-1}{x+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知直线a、b和平面α,下列说法中正确的有⑦.
①若a∥α,b∥α,则a∥b;            
②若a∥b,b∥α,则a∥α;
③若a∥α,b?α,则a∥b;
④若直线a∥b,直线b?α,则a∥α;
⑤若直线a在平面α外,则a∥α;
⑥直线a平行于平面α内的无数条直线,则a∥α;
⑦若直线a∥b,b?α,那么直线a就平行于平面α内的无数条直线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asinA-csinC=($\sqrt{2}$a-b)sinB,则角C的大小为(  )
A.$\frac{3}{4}π$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l:mx-(m2+1)y=3(m≥0).
(1)求直线l斜率的取值范围;
(2)若直线l被圆C:x2+y2-2y-8=0截得的弦长为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的通项公式为an=$\frac{1}{2n-1}$,n∈N*
(1)求数列{$\frac{{a}_{n}+2}{{a}_{n}}$}的前n项和Sn
(2)设bn=anan+1,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\sqrt{3}sin\frac{πx}{m}$,若存在x0满足|f(x0)|=$\sqrt{3}$且x02+[f(x0)]2<m2.则m的取值范围为(  )
A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.学期结束年级有15个三好学生名额分配给高二(1)(2)(3)(4)四个班,并且保证每个班至少2个名额,则不同的分配的方法有120种(用数字作答).

查看答案和解析>>

同步练习册答案