精英家教网 > 高中数学 > 题目详情
9.下面各组函数中为相同函数的是(  )
A.f(x)=$\sqrt{(x-1)^{2}}$,g(x)=x-1B.f(x)=x0,g(x)=13x
C.f(x)=3x,g(x)=($\frac{1}{3}$)-xD.f(x)=x-1,g(x)=$\frac{{x}^{2}-1}{x+1}$

分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是相同函数.

解答 解:对于A,函数f(x)=$\sqrt{{(x-1)}^{2}}$=|x-1|(x∈R),与g(x)=x+1(x∈R)的对应关系不同,所以不是相同函数;
对于B,函数f(x)x0=1(x≠0),与g(x)=1(x∈R)的定义域不同,不是相同函数;
对于C,函数f(x)=3x(x∈R),与g(x)=${(\frac{1}{3})}^{-x}$=3x(x∈R)的定义域相同,对应关系也相同,是相同函数;
对于D,函数f(x)=x-1(x∈R),与g(x)=$\frac{{x}^{2}-1}{x+1}$=x-1(x≠-1)的定义域不同,表示相同函数.
故选:C.

点评 本题考查了判断两个函数是否为相同函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.为了节约用水,学校改革澡堂收费制度,开始实行计时收费,30min以内每分钟收费0.1元,30min以上超过部分每分钟收费0.2元.编写程序并画出程序框图,要求输入时间、输出费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定义域为集合A,B={x|2<x<10},C={x|a<x<2a+1}.
(1)求A∪B,(∁RA)∩B
(2)若B∪C=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b.则函数f(x)=(1⊕x)•x-(2⊕x)(x∈[-2,2])的最大值等于(“•”和“-”仍为通常的乘法和减法)(  )
A.-1B.1C.2D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点分别为F1,F2,过左焦点且倾斜角为30°直线与右支交于点A,则双曲线离心率取值范围是(  )
A.$({1,\frac{{2\sqrt{3}}}{3}})$B.(1,2)C.$({\frac{{2\sqrt{3}}}{3},+∞})$D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设实数在区间[-1,1]内任取两个数,则这两个数的平方和小于1的概率是(  )
A.$\frac{3}{8}$B.$\frac{1}{8}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆短轴的两个端点和两个焦点所组成的四边形为正方形,且椭圆过点(-1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆的方程;
(2)直线l过点P(0,2)且与椭圆相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={y|y=-x2-2x},B={x|y=x+1},则A∩B=(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=log2(2cosx-$\sqrt{3}$)的定义域为(  )
A.[-$\frac{π}{6}$,$\frac{π}{6}$]B.[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$](k∈Z)
C.[2kπ-30°,2kπ+30°](k∈Z)D.(2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$)((k∈Z)

查看答案和解析>>

同步练习册答案