精英家教网 > 高中数学 > 题目详情
14.设实数在区间[-1,1]内任取两个数,则这两个数的平方和小于1的概率是(  )
A.$\frac{3}{8}$B.$\frac{1}{8}$C.$\frac{π}{2}$D.$\frac{π}{4}$

分析 这是一个几何概型中的面积类型,则分别求得试验的全部结果的构成的区域Ω={(x,y)|-1≤x≤1,-1≤y≤1}的面积和两个数的平方和小于1所构成的区域A={(x,y)|x2+y2<1,-1≤x≤1,-1≤y≤1}的面积,然后再求比值即为所求的概率.

解答 解:设两个数的平方和小于1的概率为P
从[-1,1]内任意取两个实数为:x,y
试验的全部结果的构成的区域为Ω={(x,y)|-1≤x≤1,-1≤y≤1}
其面积为:SΩ=4,
两个数的平方和小于1所构成的区域为:A={(x,y)|x2+y2<1,-1≤x≤1,-1≤y≤1},其面积为:SA
∴P(A)=$\frac{{S}_{A}}{{S}_{Ω}}$=$\frac{π}{4}$,
故选:D

点评 本题主要考查几何概型中的面积类型及其应用,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,直线AB与l不平行,那么平面ABC与平面β的交线与l有什么关系?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+3x+2的值,当x=-2时,v3的值为-40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|y=ln(-x2+3x+4)},B={y|y=2${\;}^{-{x^2}+2x+2}}$,x∈R},则A∩B=(  )
A.(0,1)B.(0,4)C.(3,4)D.(4,8]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下面各组函数中为相同函数的是(  )
A.f(x)=$\sqrt{(x-1)^{2}}$,g(x)=x-1B.f(x)=x0,g(x)=13x
C.f(x)=3x,g(x)=($\frac{1}{3}$)-xD.f(x)=x-1,g(x)=$\frac{{x}^{2}-1}{x+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N+,且a1,a2,a5成公比q≠1的等比数列.
(1)求c的值;
(2)数列{bn}的前n项和为Sn且满足:an•an+1•bn=1,求证:$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知直线a、b和平面α,下列说法中正确的有⑦.
①若a∥α,b∥α,则a∥b;            
②若a∥b,b∥α,则a∥α;
③若a∥α,b?α,则a∥b;
④若直线a∥b,直线b?α,则a∥α;
⑤若直线a在平面α外,则a∥α;
⑥直线a平行于平面α内的无数条直线,则a∥α;
⑦若直线a∥b,b?α,那么直线a就平行于平面α内的无数条直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l:mx-(m2+1)y=3(m≥0).
(1)求直线l斜率的取值范围;
(2)若直线l被圆C:x2+y2-2y-8=0截得的弦长为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某班k名学生在一次考试中数学成绩绘制的频率分布直方图如图,若在这k名学生中,数学成绩不低于90分的人数为34,则k=(  )
A.40B.46C.48D.50

查看答案和解析>>

同步练习册答案