分析 推导出AB与l一定相交.设AB∩l=P,则P∈AB,P∈l,则点P是平面ABC与β的一个公共点,从而直线PC就是平面ABC与β的交线,由此能证明平面ABC与β的交线与l相交.
解答 解:平面ABC与平面β的交线与l相交.
证明∵AB与l不平行,且AB?α,l?α,
∴AB与l一定相交.设AB∩l=P,则P∈AB,P∈l.
又∵AB?平面ABC,l?β,∴P∈平面ABC,P∈β.
∴点P是平面ABC与β的一个公共点.
而点C也是平面ABC与β的一个公共点,且P,C是不同的两点,
∴直线PC就是平面ABC与β的交线,
即平面ABC∩β=PC,而PC∩l=P.
∴平面ABC与β的交线与l相交.
点评 本题考查两平面的交线与已知直线的位置关系的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1.4,2) | B. | (1,1.4) | C. | (1,1.5) | D. | (1.5,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{8}$ | B. | $\frac{1}{8}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com