精英家教网 > 高中数学 > 题目详情
13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF1|=$\frac{7}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)探照灯的轴截面是一抛物线,如图所示表示平行于x轴的光线于抛物线上的点P,Q的反射情况,光线PQ过焦点F,如图所示,若抛物线y2=4x,设点P的纵坐标为a(a>0),问a取何值时,从入射点P到反射点Q的光线的路程PQ最短.

分析 (I)求得抛物线的焦点,可得c=1,设P为($\frac{{m}^{2}}{4}$,m),由椭圆的焦半径公式可得|PF1|=a+$\frac{1}{a}$•$\frac{{m}^{2}}{4}$=$\frac{7}{3}$,由椭圆和抛物线的定义可得,2a=$\frac{7}{3}$+$\frac{{m}^{2}}{4}$+1,解方程可得a=2,由a,b,c的关系,可得b,进而得到椭圆方程;
(Ⅱ)设PQ方程为x=my+1,代入抛物线方程,由韦达定理求得y1+y2=4m,y1•y2=-4,由弦长公式可知丨PQ丨=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=4(1+m2),即当m=0时,即a=2时,丨PQ丨取得最小值,最小值为4.

解答 解:(Ⅰ)由抛物线y2=4x焦点坐标为(1,0),即c=1,
设P为($\frac{{m}^{2}}{4}$,m),
由椭圆的焦半径公式可得,|PF1|=a+$\frac{1}{a}$•$\frac{{m}^{2}}{4}$=$\frac{7}{3}$,
由椭圆和抛物线的定义可得,2a=$\frac{7}{3}$+$\frac{{m}^{2}}{4}$+1,
解得:a=2,b=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{3}$,
即有椭圆的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)由F(1,0),设直线PQ方程为x=my+1,
$\left\{\begin{array}{l}{x=my+1}\\{{y}^{2}=4x}\end{array}\right.$,整理得:y2-4my-4=0,
由韦达定理可知:y1+y2=4m,y1•y2=-4,
丨PQ丨=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{1+{m}^{2}}$•$\sqrt{16{m}^{2}+16}$,
=4(1+m2),
∴当m=0时,即a=2时,丨PQ丨取得最小值,最小值为4.

点评 本题考查椭圆的方程的求法,考查焦半径公式和抛物线的定义,考查直线与抛物线的位置关系,弦长公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设(3x-2)6=a0+a1(2x-1)+a2(2x-1)2+a3(2x-1)3+a4(2x-1)4+a5(2x-1)5+a6(2x-1)6则a1+a3+a5=-$\frac{63}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,直线AB与l不平行,那么平面ABC与平面β的交线与l有什么关系?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:
消费次第第1次第2次第3次第4次≥5次
收费比例10.950.900.850.80
该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:
消费次第第1次第2次第3次第4次第5次
频数60201055
假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)设该公司从至少消费两次,求这的顾客消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出2人中恰有1人消费两次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\frac{{{x^2}-2x+1}}{x}$在[$\frac{1}{2}$,3]的最小值为(  )
A.$\frac{1}{2}$B.$\frac{4}{3}$C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{ax}{{1+{x^2}}}$是定义在(-1,1)上的函数,f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求a的值并判断函数f(x)的奇偶性;
(Ⅱ)证明函数f(x)在(-1,1)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+3x+2的值,当x=-2时,v3的值为-40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|y=ln(-x2+3x+4)},B={y|y=2${\;}^{-{x^2}+2x+2}}$,x∈R},则A∩B=(  )
A.(0,1)B.(0,4)C.(3,4)D.(4,8]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l:mx-(m2+1)y=3(m≥0).
(1)求直线l斜率的取值范围;
(2)若直线l被圆C:x2+y2-2y-8=0截得的弦长为4,求直线l的方程.

查看答案和解析>>

同步练习册答案