精英家教网 > 高中数学 > 题目详情
19.在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N+,且a1,a2,a5成公比q≠1的等比数列.
(1)求c的值;
(2)数列{bn}的前n项和为Sn且满足:an•an+1•bn=1,求证:$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

分析 (1)利用等差数列与等比数列的通项公式即可得出.
(2)利用“裂项求和”方法、数列的单调性即可证明.

解答 (1)解:∵a1=1,an+1=an+c(c为常数,n∈N+
∴a2=1+c,a5=1+4c.
∵a1,a2,a5成公比q≠1的等比数列,∴${a}_{2}^{2}$=a1a5
∴(1+c)2=1×(1+4c),解得c=0,或2.
c=0时,q=1,舍去.
∴c=2.
(2)证明:∵an+1=an+2,可得:an+1-an=2.
∴an=1+2(n-1)=2n-1.
∵an•an+1•bn=1,∴bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$$(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴数列{bn}的前n项和为Sn=$\frac{1}{2}$$[(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}$$(1-\frac{1}{2n+1})$<$\frac{1}{2}$.
又数列$\{-\frac{1}{2n+1}\}$单调递增,∴Sn≥S1=$\frac{1}{2}×(1-\frac{1}{3})$=$\frac{1}{3}$.
∴$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在用二分法求方程log2x=$\frac{1}{3}$x的一个近似解时,现在已经将一根锁定在(1,2)内,则下一步可断定该根所在的区间为(  )
A.(1.4,2)B.(1,1.4)C.(1,1.5)D.(1.5,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).
(1)求过点A的圆M的切线方程;
(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;
(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得$\overrightarrow{TA}$+$\overrightarrow{TP}$=$\overrightarrow{TQ}$,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设数列{an},{bn}都是等差数列,若a1+b1=7,a5+b5=35,则a3+b3=21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设实数在区间[-1,1]内任取两个数,则这两个数的平方和小于1的概率是(  )
A.$\frac{3}{8}$B.$\frac{1}{8}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a7=12,则a2+a12的值是(  )
A.24B.48C.96D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合M={x|x=k+$\frac{1}{2}$,k∈Z},N={x|x=$\frac{k}{2}$+1,k∈Z},若x0∈M,则x0与N的关系是(  )
A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,∠BAC为伸入江中的半岛,AB和AC为两江岸,M处为水文站,N处为电讯局,现欲在两江岸AB和AC上各建一个水文观测点P、Q,现测得∠BAC=45°,当直角坐标系以点A为坐标原点且以直线BA为x轴时,测得M(-4,1)、N(-3,2).P、Q两点应建在何处才能使路程MPQN最短?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的公差大于零,且a2、a4是方程x2-18x+65=0的两个根;各项均为正数的等比数列{bn}的前n项和为Sn,且满足b3=a3,S3=13.
(1)求数列{an}、{bn}的通项公式;
(2)若数列{cn}满足cn=$\left\{\begin{array}{l}{{a}_{n},n≤6}\\{{b}_{n},n>6}\end{array}\right.$,求数列的前项和Tn

查看答案和解析>>

同步练习册答案