精英家教网 > 高中数学 > 题目详情
10.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).
(1)求过点A的圆M的切线方程;
(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;
(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得$\overrightarrow{TA}$+$\overrightarrow{TP}$=$\overrightarrow{TQ}$,求实数t的取值范围.

分析 (1)将圆M化为标准方程,求得圆心和半径,直线AM的斜率和切线的斜率,由点斜式方程即可得到所求切线的方程;
(2)由题意得OA=2$\sqrt{5}$,kOA=2,设l:y=2x+b,则圆心M到直线l的距离:d=$\frac{|5+b|}{\sqrt{5}}$,由此能求出直线l的方程;
(3)$\overrightarrow{TA}$=$\overrightarrow{PQ}$,即|$\overrightarrow{TA}$|=$\sqrt{(t-2)^{2}+{4}^{2}}$,又|$\overrightarrow{PQ}$|≤10,得t∈[2-2$\sqrt{21}$,2+2$\sqrt{21}$],对于任意t∈[2-2$\sqrt{21}$,2+2$\sqrt{21}$].欲使$\overrightarrow{TA}$=$\overrightarrow{PQ}$,只需要作直线TA的平行线,使圆心到直线的距离为$\sqrt{25-\frac{|\overrightarrow{TA}{|}^{2}}{4}}$,由此能求出实数t的取值范围.

解答 解:(1)由题意,圆M:(x-6)2+(y-7)2=25,圆心M(6,7),
则kAM=$\frac{7-4}{6-2}$=$\frac{3}{4}$,所以切线方程y-4=-$\frac{4}{3}$(x-2),即4x+3y-20=0;…(4分)
(2)由题意得OA=2$\sqrt{5}$,kOA=2,设l:y=2x+b,
则圆心M到直线l的距离d=$\frac{|12-7+b|}{\sqrt{{2}^{2}+{1}^{2}}}$=$\frac{|5+b|}{\sqrt{5}}$,…(6分)
则|BC|=2$\sqrt{{5}^{2}-{d}^{2}}$=2$\sqrt{25-\frac{(5+b)^{2}}{5}}$,
又|BC|=2$\sqrt{5}$,即2$\sqrt{25-\frac{(5+b)^{2}}{5}}$=2$\sqrt{5}$,
解得b=5或b=-15,即l:y=2x+5或y=2x-15; …(8分)
(3)$\overrightarrow{TA}$+$\overrightarrow{TP}$=$\overrightarrow{TQ}$,即$\overrightarrow{TA}$=$\overrightarrow{TQ}$-$\overrightarrow{TP}$=$\overrightarrow{PQ}$,即|$\overrightarrow{TA}$|=|$\overrightarrow{PQ}$|,
|$\overrightarrow{TA}$|=$\sqrt{(t-2)^{2}+{4}^{2}}$,
又|$\overrightarrow{PQ}$|≤10,即$\sqrt{(t-2)^{2}+{4}^{2}}$≤10,解得t∈[2-2$\sqrt{21}$,2+2$\sqrt{21}$].
对于任意t∈[2-2$\sqrt{21}$,2+2$\sqrt{21}$],欲使$\overrightarrow{TA}$=$\overrightarrow{PQ}$,
此时|$\overrightarrow{TA}$|≤10,只需要作直线TA的平行线,使圆心到直线的距离为$\sqrt{25-\frac{|\overrightarrow{TA}{|}^{2}}{4}}$.
必然与圆交于P、Q两点,此时|$\overrightarrow{TA}$|=|$\overrightarrow{PQ}$|,即$\overrightarrow{TA}$=$\overrightarrow{PQ}$,
因此实数t的取值范围为t∈[2-2$\sqrt{21}$,2+2$\sqrt{21}$].…(12分)

点评 本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),且其离心率为$\frac{\sqrt{2}}{2}$,F1、F2分别为椭圆C的左、右焦点.设直线l:y=kx+m与椭圆C相交于A,B两点,O为坐标原点.
(I)求椭圆C的标准方程;
(II)当m=-2时,求△OAB的面积的最大值;
(III)以线段OA,OB为邻边作平行四边形OAPB,若点Q在椭圆C上,且满足$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:
消费次第第1次第2次第3次第4次≥5次
收费比例10.950.900.850.80
该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:
消费次第第1次第2次第3次第4次第5次
频数60201055
假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)设该公司从至少消费两次,求这的顾客消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出2人中恰有1人消费两次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{ax}{{1+{x^2}}}$是定义在(-1,1)上的函数,f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求a的值并判断函数f(x)的奇偶性;
(Ⅱ)证明函数f(x)在(-1,1)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+3x+2的值,当x=-2时,v3的值为-40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.三个数a=$\sqrt{0.31}$,b=log20.31,c=20.31之间的大小关系是(  )
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|y=ln(-x2+3x+4)},B={y|y=2${\;}^{-{x^2}+2x+2}}$,x∈R},则A∩B=(  )
A.(0,1)B.(0,4)C.(3,4)D.(4,8]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N+,且a1,a2,a5成公比q≠1的等比数列.
(1)求c的值;
(2)数列{bn}的前n项和为Sn且满足:an•an+1•bn=1,求证:$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的函数f(x)对任意实数x满足f(1+x)=f(1-x)与f(x+2)=f(x),且当x∈[3,4]时,f(x)=x-2,则$f(\frac{1}{2})$=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案