精英家教网 > 高中数学 > 题目详情
17.已知等差数列{an}的公差大于零,且a2、a4是方程x2-18x+65=0的两个根;各项均为正数的等比数列{bn}的前n项和为Sn,且满足b3=a3,S3=13.
(1)求数列{an}、{bn}的通项公式;
(2)若数列{cn}满足cn=$\left\{\begin{array}{l}{{a}_{n},n≤6}\\{{b}_{n},n>6}\end{array}\right.$,求数列的前项和Tn

分析 (1)设等差数列{an}的公差d>0,依题意知a2+a4=18,a2•a4=65,可求得a2=5,与d=4,从而可得数列{an}的通项公式;同理,可求得等比数列{bn}的通项公式;
(2)由于数列{cn}满足cn=$\left\{\begin{array}{l}{{a}_{n},n≤6}\\{{b}_{n},n>6}\end{array}\right.$,分n≤6与n>6讨论,分别利用等差数列与等比数列的求和公式即可求得数列{cn}的前项和Tn

解答 解:(1)依题意等差数列{an}的公差d>0,
且a2+a4=18,a2•a4=65,解得:a4=13,a2=5,
由a4=a2+2d得:d=4,
∴an=a2+(n-2)×4=4n-3.
∴a3=9,
依题意,公比为q(q>0)的等比数列{bn}中,b3=a3=9,S3=b1+b2+9=13,
即$\left\{\begin{array}{l}{{{b}_{1}q}^{2}=9}\\{{b}_{1}{+b}_{1}q=4}\end{array}\right.$,
解得:b1=1,q=3,故bn=3n-1
(2)∵cn=$\left\{\begin{array}{l}{{a}_{n},n≤6}\\{{b}_{n},n>6}\end{array}\right.$,数列{cn}的前项和为Tn
∴当n≤6时,Tn=a1+a2+…+an=$\frac{[1+(4n-3)]n}{2}$=2n2-n;
当n>6时,Tn=(a1+a2+…+a6)+(Sn-S6
=(2×62-6)+($\frac{1{-3}^{n}}{1-3}$-$\frac{1{-3}^{6}}{1-3}$)=66+($\frac{{3}^{n}}{2}$-$\frac{{3}^{6}}{2}$)=$\frac{{3}^{n}}{2}$-$\frac{597}{2}$.
∴Tn=$\left\{\begin{array}{l}{{2n}^{2}-n,1≤n≤6}\\{\frac{{3}^{n}-597}{2},n>6}\end{array}\right.$.

点评 本题考查数列的求和,着重考查等差数列与等比数列的通项公式与求和公式的应用,考查方程思想与分类讨论思想的综合运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N+,且a1,a2,a5成公比q≠1的等比数列.
(1)求c的值;
(2)数列{bn}的前n项和为Sn且满足:an•an+1•bn=1,求证:$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的函数f(x)对任意实数x满足f(1+x)=f(1-x)与f(x+2)=f(x),且当x∈[3,4]时,f(x)=x-2,则$f(\frac{1}{2})$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i是虚数单位,复数z(1-i)=i2014,则z的共轭复数为(  )
A.-$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某班k名学生在一次考试中数学成绩绘制的频率分布直方图如图,若在这k名学生中,数学成绩不低于90分的人数为34,则k=(  )
A.40B.46C.48D.50

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=x2-2x,g(x)=2x+a,若对于任意x1∈[-1,2],均存在x2∈[-1,2],使得f(x1)=g(x2),则实数a的取值范围是(  )
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-1,2]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知样本3,4,x,7,5的平均数是5,则此样本的方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列命题中,正确命题的序号是 ②③⑤⑥.
①过点(1,2)且在坐标轴上的截距相等的直线方程是x+y=3;
②函数f(x)的定义域是R,f(-1)=2,对?x∈R,f′(x)>2,则f(x)>2x+4的解集为(-1,+∞);
③根据表格中的数据,可以判定方程ex-x-6=0的一个根所在的区间为(2,3);
x-10123
ex0.3712.727.3920.09
x+656789
④已知双曲线的渐近线方程是5x±12y=0,则以双曲线的顶点为焦点,以双曲线的焦点为顶点的椭圆的离心率e=$\frac{12}{13}$;
⑤设函数f(x)=2lnx+2x-a,若存在b∈[1,e],使得f[f(b)]=b成立,则实数a的取值范围是[1,2+e];
⑥函数f(x)=(1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$)cos2x在区间[-3,3]上零点有5个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P(cosx,sinx)在直线y=3x上,则sinxcosx的值是(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{9}$

查看答案和解析>>

同步练习册答案