精英家教网 > 高中数学 > 题目详情
6.下列命题中,正确命题的序号是 ②③⑤⑥.
①过点(1,2)且在坐标轴上的截距相等的直线方程是x+y=3;
②函数f(x)的定义域是R,f(-1)=2,对?x∈R,f′(x)>2,则f(x)>2x+4的解集为(-1,+∞);
③根据表格中的数据,可以判定方程ex-x-6=0的一个根所在的区间为(2,3);
x-10123
ex0.3712.727.3920.09
x+656789
④已知双曲线的渐近线方程是5x±12y=0,则以双曲线的顶点为焦点,以双曲线的焦点为顶点的椭圆的离心率e=$\frac{12}{13}$;
⑤设函数f(x)=2lnx+2x-a,若存在b∈[1,e],使得f[f(b)]=b成立,则实数a的取值范围是[1,2+e];
⑥函数f(x)=(1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$)cos2x在区间[-3,3]上零点有5个.

分析 求出过点(1,2)且在坐标轴上的截距相等的直线方程,可判断①;
求解不等式f(x)>2x+4,可判断②;
分析方程ex-x-6=0根的位置,可判断③;
求出椭圆的离心率,可判断④;
求出实数a的范围,可判断⑤;
求出函数的零点个数,可判断⑥.

解答 解:①过点(1,2)且在坐标轴上的截距相等的直线方程是x+y=3或2x-y=0,故错误;
②函数f(x)的定义域是R,f(-1)=2,对?x∈R,f′(x)>2,
g(x)=f(x)-2x满足g′(x)=f′(x)-2>0,
即g(x)=f(x)-2x为增函数,且g(-1)=4
则f(x)>2x+4可化为:g(x)>4=g(-1)
解得:x∈(-1,+∞),故正确;
③根据表格中的数据,可以判定方程ex-x-6=0的一个根所在的区间为(2,3),正确;
④已知双曲线的渐近线方程是5x±12y=0,
当焦点在x轴上时,则以双曲线的顶点为焦点,以双曲线的焦点为顶点的椭圆的离心率e=$\frac{12}{13}$;
当焦点在y轴上时,则以双曲线的顶点为焦点,以双曲线的焦点为顶点的椭圆的离心率e=$\frac{5}{13}$;
综上可得:以双曲线的顶点为焦点,以双曲线的焦点为顶点的椭圆的离心率e=$\frac{12}{13}$,错误;
⑤解:f′(x)=$\frac{2}{x}$+2,
∴f(x)在(0,+∞)上单调递增;
∴由f[f(b)]=b,得f(b)=b;
则f(x)=x在[1,e]上有根;
即2lnx+2x-a=x;
∴a=2lnx+x;
令h(x)=2lnx+x,h′(x)=$\frac{2}{x}$+1>0;
∴h(x)在[1,e]上单调递增;
∴h(x)min=h(1)=1,h(x)max=h(e)=2+e;
∴a∈[1,2+e];
即实数a的取值范围是[1,2+e].正确;
⑥由题意得,f(x)=(1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$)cos2x=0,
①当cos2x=0时,由x∈[-3,3]得2x∈[-6,6],
解得x=$±\frac{π}{4}$或±$\frac{3π}{4}$;
②当1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$=0时,
设g(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$,
则g′(x)=1-x+x2-x3+…-x2013+x2014=$\left\{\begin{array}{l}2015,x=-1\\ \frac{1+{x}^{2015}}{1+x},x≠-1\end{array}\right.$,
∴g′(x)>0,则g(x)在[-3,3]上单调递增,
∵g(-3)<0,g(3)>0,
∴g(x)在[-3,3]上有且仅有1个零点,
显然g($±\frac{π}{4}$)≠0、g(±$\frac{3π}{4}$)≠0,
所以f(x)共有5个零点,正确;
故答案为:②③⑤⑥

点评 本题以命题的真假判断与应用为载体,考查直线方程,零点个数,抽象不等式的解法等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,∠BAC为伸入江中的半岛,AB和AC为两江岸,M处为水文站,N处为电讯局,现欲在两江岸AB和AC上各建一个水文观测点P、Q,现测得∠BAC=45°,当直角坐标系以点A为坐标原点且以直线BA为x轴时,测得M(-4,1)、N(-3,2).P、Q两点应建在何处才能使路程MPQN最短?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的公差大于零,且a2、a4是方程x2-18x+65=0的两个根;各项均为正数的等比数列{bn}的前n项和为Sn,且满足b3=a3,S3=13.
(1)求数列{an}、{bn}的通项公式;
(2)若数列{cn}满足cn=$\left\{\begin{array}{l}{{a}_{n},n≤6}\\{{b}_{n},n>6}\end{array}\right.$,求数列的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$上求一点M,使点M到直线x+2y-10=0的距离最小,则点M的坐标为$(\frac{9}{5},\frac{8}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题正确的是(  )
①任何两个变量都具有相关关系;
②某商品的需求量与该商品的价格是一种非确定性关系;
③圆的周长与该圆的半径具有相关关系;
④根据散点图求得回归直线方程可能是没有意义的;
⑤两个变量间的相关关系可以通过回归直线方程,把非确定性问题转化为确定性问题进行研究.
A.①③④B.②④⑤C.③④⑤D.②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=a3-x+1,(a>0且a≠1),则函数f(x)的图象恒过定点(3,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知底角为45°的等腰梯形ABCD,底边BC长为7cm,腰长为2$\sqrt{2}$cm,当一条垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x,
(1)试写出直线l左边部分的面积f(x)关于x的函数.
(2)已知A={x|f(x)<4},B={x|a-2<x<a+2},若A∪B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=sin2x+2cos2x-1,有下列四个结论:
①函数f(x)在区间[-$\frac{3π}{8}$,$\frac{π}{8}$]上是增函数;
②点($\frac{3π}{8}$,0)是函数f(x)图象的一个对称中心;
③函数f(x)的图象可以由函数y=$\sqrt{2}$sin2x的图象向左平移$\frac{π}{4}$得到;
④若x∈[0,$\frac{π}{2}$],则f(x)的值域为[0,$\sqrt{2}$].
则所有正确结论的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.将函数y=2sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{1}{4}$个周期后,所得图象对应的函数为$y=2sin(2x-\frac{π}{6})$.

查看答案和解析>>

同步练习册答案