精英家教网 > 高中数学 > 题目详情
8.如图,∠BAC为伸入江中的半岛,AB和AC为两江岸,M处为水文站,N处为电讯局,现欲在两江岸AB和AC上各建一个水文观测点P、Q,现测得∠BAC=45°,当直角坐标系以点A为坐标原点且以直线BA为x轴时,测得M(-4,1)、N(-3,2).P、Q两点应建在何处才能使路程MPQN最短?

分析 分别求出M关于AB对称的点M1为(-4,-1),N关于AC对称的点N1为(-2,3),所以M1,N1与AB,AC 的交点就是P,Q点时,MPQN最短就是M1N1的距离,即可得出结论.

解答 解:分别求出M关于AB对称的点M1为(-4,-1),N关于AC对称的点N1为(-2,3),
所以M1,N1与AB,AC 的交点就是P,Q点时,MPQN最短就是M1N1的距离,
M1N1的直线方程为y=2x+7交AB点为P(-$\frac{7}{2}$,0),
交AC点为Q,AC方程式为y=-x所以Q(-$\frac{7}{3}$,$\frac{7}{3}$).

点评 本题考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{ax}{{1+{x^2}}}$是定义在(-1,1)上的函数,f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求a的值并判断函数f(x)的奇偶性;
(Ⅱ)证明函数f(x)在(-1,1)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N+,且a1,a2,a5成公比q≠1的等比数列.
(1)求c的值;
(2)数列{bn}的前n项和为Sn且满足:an•an+1•bn=1,求证:$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知{a,b,c}={0,1,2},且下列三个关系:a≠2,b=2,c≠0只有一个正确,则100c+10b+a=102.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l:mx-(m2+1)y=3(m≥0).
(1)求直线l斜率的取值范围;
(2)若直线l被圆C:x2+y2-2y-8=0截得的弦长为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中为偶函数的是(  )
A.y=x2-2xB.y=|lgx|C.y=3x+3-xD.y=$\frac{x}{{2}^{x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的函数f(x)对任意实数x满足f(1+x)=f(1-x)与f(x+2)=f(x),且当x∈[3,4]时,f(x)=x-2,则$f(\frac{1}{2})$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i是虚数单位,复数z(1-i)=i2014,则z的共轭复数为(  )
A.-$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列命题中,正确命题的序号是 ②③⑤⑥.
①过点(1,2)且在坐标轴上的截距相等的直线方程是x+y=3;
②函数f(x)的定义域是R,f(-1)=2,对?x∈R,f′(x)>2,则f(x)>2x+4的解集为(-1,+∞);
③根据表格中的数据,可以判定方程ex-x-6=0的一个根所在的区间为(2,3);
x-10123
ex0.3712.727.3920.09
x+656789
④已知双曲线的渐近线方程是5x±12y=0,则以双曲线的顶点为焦点,以双曲线的焦点为顶点的椭圆的离心率e=$\frac{12}{13}$;
⑤设函数f(x)=2lnx+2x-a,若存在b∈[1,e],使得f[f(b)]=b成立,则实数a的取值范围是[1,2+e];
⑥函数f(x)=(1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$)cos2x在区间[-3,3]上零点有5个.

查看答案和解析>>

同步练习册答案