精英家教网 > 高中数学 > 题目详情
16.已知{a,b,c}={0,1,2},且下列三个关系:a≠2,b=2,c≠0只有一个正确,则100c+10b+a=102.

分析 根据元素与集合的关系进行判断,确定a,b,c的值,即可求100c+10b+a的值.

解答 解:由题意:{a,b,c}={0,1,2},∵a≠2,b=2,c≠0只有一个正确,
a、b、c的取值有以下情况:
当a=0时,b=1、c=2或b=2、c=1,此时不满足条件;
当a=1时,b=0、c=2或b=2、c=0,此时不满足条件;
当a=2时,b=1、c=0,此时不满足条件;
当a=2时,b=0、c=1,此时满足条件;
综上得,a=2、b=0、c=1,
则100c+10b+a=102.
故答案为:102.

点评 本题主要考查元素与集合的关系,同时考查了逻辑推理求解a,b,c的值.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知命题p:x∈A,且A={x|a-1<x<a+1},命题q:x∈B,且B={x|y=lg(x2-3x+2)}.
(1)若A∪B=R,求实数a的取值范围;
(2)若¬q是¬p的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设数列{an},{bn}都是等差数列,若a1+b1=7,a5+b5=35,则a3+b3=21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a7=12,则a2+a12的值是(  )
A.24B.48C.96D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合M={x|x=k+$\frac{1}{2}$,k∈Z},N={x|x=$\frac{k}{2}$+1,k∈Z},若x0∈M,则x0与N的关系是(  )
A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1,其左右焦点分别为F1、F2,过椭圆的左焦点F1作一条倾斜角为45°的直线与椭圆交于A,B两点
(1)求三角形ABF2的周长;
(2)求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,∠BAC为伸入江中的半岛,AB和AC为两江岸,M处为水文站,N处为电讯局,现欲在两江岸AB和AC上各建一个水文观测点P、Q,现测得∠BAC=45°,当直角坐标系以点A为坐标原点且以直线BA为x轴时,测得M(-4,1)、N(-3,2).P、Q两点应建在何处才能使路程MPQN最短?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知棱长为1的正方体ABCD-A1B1C1D1中,P,Q是面对角线A1C1上的两个不同的动点(包括端点A1,C1).给出以下四个结论:
①存在P,Q两点,使BP⊥DQ;
②存在P,Q两点,使BP,DQ与直线B1C都成45°的角;
③若PQ=1,则四面体BDPQ的体积一定是定值;
④若PQ=1,则四面体BDPQ在该正方体六个面上的正投影的面积之和为定值.
以上各结论中,正确结论的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$上求一点M,使点M到直线x+2y-10=0的距离最小,则点M的坐标为$(\frac{9}{5},\frac{8}{5})$.

查看答案和解析>>

同步练习册答案