精英家教网 > 高中数学 > 题目详情
12.某班k名学生在一次考试中数学成绩绘制的频率分布直方图如图,若在这k名学生中,数学成绩不低于90分的人数为34,则k=(  )
A.40B.46C.48D.50

分析 根据频率分布直方图,求出数学成绩不低于90分的频率,再根据这k名学生中,数学成绩不低于90分的人数为34,求得k.

解答 解:由频率分布直方图知,数学成绩不低于90分的频率为
(0.030+0.020+0.010+0.025)×10=0.85,
∵在这k名学生中,数学成绩不低于90分的人数为34,
∴m=34÷0.85=40.
故选:A.

点评 本题考查了频率分布直方图的应用问题,解题时应根据频率分布直方图求出频率,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设实数在区间[-1,1]内任取两个数,则这两个数的平方和小于1的概率是(  )
A.$\frac{3}{8}$B.$\frac{1}{8}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列命题,其中正确命题的序号是②③⑤
①存在实数α,使sinα•cosα=1;
②函数$y=sin(\frac{3}{2}π+x)$是偶函数;
③直线$x=\frac{π}{8}$是函数$y=sin(2x+\frac{5}{4}π)$的一条对称轴;
④若α、β是第一象限的角,且α>β,则sinα>sinβ;
⑤函数$y=2sin(\frac{π}{3}-x)-cos(\frac{π}{6}+x)(x∈R)$的最小值等于-1;
⑥函数$y=|{tan(2x+\frac{π}{3})}|$的周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若对?x,y∈(0,+∞),不等式4xlna≤ex+y-2+ex-y-2+2恒成立,则正实数a的最大值是$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=log2(2cosx-$\sqrt{3}$)的定义域为(  )
A.[-$\frac{π}{6}$,$\frac{π}{6}$]B.[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$](k∈Z)
C.[2kπ-30°,2kπ+30°](k∈Z)D.(2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$)((k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的公差大于零,且a2、a4是方程x2-18x+65=0的两个根;各项均为正数的等比数列{bn}的前n项和为Sn,且满足b3=a3,S3=13.
(1)求数列{an}、{bn}的通项公式;
(2)若数列{cn}满足cn=$\left\{\begin{array}{l}{{a}_{n},n≤6}\\{{b}_{n},n>6}\end{array}\right.$,求数列的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆O的半径为3,圆O的一条弦AB长为4,点P为圆上一点,则$\overrightarrow{AB}•\overrightarrow{AP}$的最大值为(  )
A.16B.20C.24D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题正确的是(  )
①任何两个变量都具有相关关系;
②某商品的需求量与该商品的价格是一种非确定性关系;
③圆的周长与该圆的半径具有相关关系;
④根据散点图求得回归直线方程可能是没有意义的;
⑤两个变量间的相关关系可以通过回归直线方程,把非确定性问题转化为确定性问题进行研究.
A.①③④B.②④⑤C.③④⑤D.②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.不等式$\frac{3}{x+1}$≤1的解集是(-∞,-1)∪[2,+∞).

查看答案和解析>>

同步练习册答案