精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB,垂足为F.
(1)求证PA∥平面EBD;
(2)求二面角P-AD-F的余弦值.
考点:二面角的平面角及求法,直线与平面平行的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)连结AC、BD交于O,连结OE,由已知得EO∥PA,由此能证明PA∥面EBD.
(Ⅱ)由已知PD⊥底面ABCD,得PD⊥AD,PD⊥CD,以DA,DC,DP所在直线为坐标轴,D为原点建立空间直角坐标系,利用向量法能求出二面角P-AD-F的余弦值.
解答: 解:(Ⅰ) 如图,连结AC、BD交于O,连结OE.
由ABCD是正方形,易得O为AC的中点,从而OE为△PAC的中位线,
∴EO∥PA.
∵EO?面EBD,PA?面EBD,
∴PA∥面EBD.…(4分)
(Ⅱ)由已知PD⊥底面ABCD,得PD⊥AD,PD⊥CD.
如图,以DA,DC,DP所在直线为坐标轴,D为原点建立空间直角坐标系.
设AD=2,则D(0,0,0),A(2,0,0),P(0,0,2),
E(0,1,1),B(2,2,0),
PB
=(2,2,-2),
DA
=(2,0,0).…(6分)
设F(x0,y0,z0),
PF
PB
,则由
PF
=(x0,y0,z0-2),
得(x0,y0,z0-2)=λ(2,2,-2),
即得
x0=2λ
y0=2λ
z0=2-2λ
,于是F(2λ,2λ,2-2λ).
EF
=(2λ,2λ-1,1-2λ).
又EF⊥PB,∴2λ•2+(2λ-1)•2+(1-2λ)•(-2)=0,解得λ=
1
3

∴F(
2
3
2
3
4
3
),
DF
=(
2
3
2
3
4
3
). …(8分)
设平面DAF的法向量是
n
=(x,y,z),
DA
n
=2x=0
DF
n
=x+y+2z=0
,令z=1,得
n
=(0,-2,1).
又平面PAD的一个法向量为
m
=(0,1,0),…(10分)
设二面角P-AD-F的平面角为θ,
则cosθ=|
n
m
|
n
|•|
m
|
|=
2
5
5

即二面角P-AD-F的余弦值为
2
5
5
.  …(12分)
点评:本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的定义域:
(1)y=
2-x
;                 
(2)y=lg(3x-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,四边形BCC1B1是边长为4的正方形,直线AB与平面ACC1A1所成角的正切值为2,点D为棱AA1上的动点.
(I)当点D为何位置时,CD⊥平面B1C1D?
(II)当AD=2
2
时,求二面角B1-DC-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题p:2n-1(n∈Z)是奇数;q:2n+1(n∈Z)是偶数,则下列说法中正确的是(  )
A、¬p为真B、¬q为假
C、p∨q为真D、p∧q为真

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,D是BC的中点,E是AC的三等分点,且EC=2AE,若
AB
=
c
AC
=
b
,则
BE
=
 
,(结果用
c
b
表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线M:
x2
a2
-
y2
b2
=1(a>0,b>0)的半焦距为c,且双曲线M与圆x2+y2=c2相交于A,B,C,D四点,若以A,B,C,D为顶点的四边形为正方形,则双曲线M的离心率等于(  )
A、2+
2
B、
2+
2
C、
2
+1
D、
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
x-y+1≥0
x+y≥0
x≤0
,若z=x+2y,则z的最大值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设正实数a,b满足a+2b=2.则ab的最大值为
 
:a2+b2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是(  )
A、k>8?B、k≤8?
C、k<8?D、k=9?

查看答案和解析>>

同步练习册答案